V geometrii je 6simplex šestirozměrnou analogií tetraedru.

Objem a obsah 6simplexu

editovat

Následující vzorce udávají, jaký je objem 6simplexu, a jeho k-rozměrné povrchy (což je vždy obsah k-rozměrné stěny krát počet těchto stěn) v závislosti na hraně a.

 

 

 

 

 

 

Vícerozměrná geometrická tělesa
d=2 trojúhelník čtverec šestiúhelník pětiúhelník
d=3 tetraedr krychle, oktaedr krychloktaedr, kosočtverečný dvanáctistěn dvanáctistěn, dvacetistěn
d=4 5nadstěn teserakt, 16nadstěn 24nadstěn 120nadstěn, 600nadstěn
d=5 5simplex penterakt, 5ortoplex
d=6 6simplex hexerakt, 6ortoplex
d=7 7simplex hepterakt, 7ortoplex
d=8 8simplex okterakt, 8ortoplex
d=9 9simplex ennerakt, 9ortoplex
d=10 10simplex dekerakt, 10ortoplex
d=11 11simplex hendekerakt, 11ortoplex
d=12 12simplex dodekerakt, 12ortoplex
d=13 13simplex triskaidekerakt, 13ortoplex
d=14 14simplex tetradekerakt, 14ortoplex
d=15 15simplex pentadekerakt, 15ortoplex
d=16 16simplex hexadekerakt, 16ortoplex
d=17 17simplex heptadekerakt, 17ortoplex
d=18 18simplex oktadekerakt, 18ortoplex
d=19 19simplex ennedekerakt, 19ortoplex
d=20 20simplex ikosarakt, 20ortoplex