Otevřít hlavní menu
Srovnání příspěvků jednotlivých plynů k absorpci a rozptylu tepelného záření. Největší příspěvek má vodní pára.

Skleníkové plyny jsou plyny, vyskytující se v atmosféře Země, které nejvíce přispívají k tzv. skleníkovému jevu (efektu). Nejvýznamnější skleníkové plyny přirozeného původu jsou vodní pára, oxid uhličitý, metan a oxid dusný. Značný vliv na skleníkový jev má také Rayleighův rozptyl na kyslíku.[1] Antropogenními skleníkovými plyny se rozumí ty plynné složky, jejichž množstevní podíl v atmosféře Země je částečně nebo i zcela závislý na životních projevech lidské populace.

Obsah

Antropogenní skleníkové plynyEditovat

Za nejúčinnější antropogenní skleníkové plyny jsou pokládány:

Emise antropogenních skleníkových plynů jsou kontrolovány Kjótským protokolem a Rámcovou úmluvou, použití halonů a freonů je kontrolováno Montrealským protokolem a jeho dodatky.

Vliv jednotlivých skleníkových plynůEditovat

Koncentrace CO2 vzrostla od poloviny 18. století (preindustriální období) z hodnot kolem 280 ppm na hodnotu 379 ppm v roce 2005 a v současnosti (2018) dosahuje již hodnot vyšších než 400 ppm. Jde tak pravděpodobně o nejvyšší hodnotu, které bylo za uplynulých 650 tisíc let dosaženo (hodnoty se v této minulosti pohybovaly v rozpětí přibližně 180 až 300 ppm). Přestože míra nárůstu oxidu uhličitého vykazuje určitou meziroční variabilitu, průměrný roční nárůst koncentrace např. v období 1995 – 2005 byl 1,9 ppm, zatímco v období 1960 – 2005 1,4 ppm. Roku 1960 byly emise CO2 na obyvatele přibližně 3 tuny, roku 1990 4 tuny a roku 2010 necelých 5 tun.[4] Podíl na kumulativních emisích CO2 od roku 1751 byl v roce 2015 následující: USA 25,7 %, EU28 21,8 % (z toho Německo 5,9 %, UK 5 %, Francie 2,4 %, ... ČR 0,5 %), Čína 12,2 %, Rusko 6,4 %, Japonsko 4 %, Indie 2,9 %, Afrika 2,5 %, Kanada 2 %.[5]

Koncentrace CH4 se za stejné období zvýšily z přibližně 715 ppb na 1774 ppb a koncentrace N2O z hodnot kolem 270 ppb na 319 ppb. Fluorované uhlovodíky a fluorid sírový jsou látkami novými, které se v preindustriálním období nevyskytovaly[6], [7]. Panel vědců publikoval v roce 2018 studii dokládající, že nesnížená produkce skleníkových plynů lidskou civilizací bude mít pravděpodobně za následek významnou změnu ve složení a biodiverzitě pozemských ekosystémů.[8]

CO2 ekvivalentEditovat

Skleníkové plyny jsou podle svého potenciálního příspěvku ke skleníkovému jevu atmosféry klasifikovány koeficienty globálního ohřevu (GWP), jehož jednotkou je příspěvek ke skleníkovému efektu jedné molekuly CO2. Pomocí těchto koeficientů je možné určit tzv. ekvivalent CO2 (zapisováno jako CO2 ekv.), tedy množství CO2, které by mělo ekvivalentní příspěvek ke skleníkovému jevu atmosféry stejný jako množství příslušného plynu.

Skleníkový plyn Koncentrace (roky) Změna oproti roku 1780 Přirozené a antropogenní zdroje Ekvivalent CO2 Procentní podíl na skleníkovém jevu
1780 1995
vodní pára 0,2 - 4 objemová procenta, průměrně 1,3 ? Moře, oceány, sladkovodní zdroje – hydrosféra obecně viz sekce "Vodní pára" 36-72
CO2 280 ppm 360 ppm + 29 % spalování fosilních paliv a biomasy (80 %); odlesňování; Aerobní rozklad organických látek; lesní požáry; vulkanická činnost; eroze 1 9-26
CH4 0,70 ppm 1,70 ppm + 143 % Mokřady, močály a tundra (20 %); anaerobní rozklad organických látek, termiti, spalování biomasy a skládky odpadů (5 %); zpracování zemního plynu a ropy, uhelné zdroje, úniky plynu (10 %); chov dobytka, pěstování rýže (25 %); tání permafrostu 20 4-9
N2O 280 ppb 310 ppb + 11 % Lesy; louky; oceány; půda; zpracování půdy; zemědělská hnojiva; spalování fosilních paliv a biomasy, změna v užívání půdy 200
CFC (freony) 0 300 - 900 ppt - Chladicí zařízení (30 %); aerosoly (30 %); plastické pěny (32 %), rozpouštědla, počítačový průmysl, sterilanty, farmaceutický průmysl (8 %) 7 500 může být značný[9]
Ozón (O3) - 82 ppb Globální množství pokleslo ve stratosféře a vzrostlo v blízkosti zemského povrchu Vytváří se přirozeně reakcí fotochemickou reakcí slunečního záření s molekulami kyslíku a uměle jako součást fotochemického smogu 2000 3-7
 

Vodní páraEditovat

Vodní pára se neustále tvoří a kondenzuje v relativně krátkém čase, její doba setrvání v atmosféře je velmi krátká na rozdíl například od CO2, který v atmosféře setrvává velmi dlouho. Od 65 % do 80 % CO2 uvolněného do ovzduší se rozpouští v oceánech po dobu 20–200 let. Zatímco vodní pára je skutečně nejdůležitějším skleníkovým plynem, problémem, který z něj dělá zpětnou vazbu (spíše než forcing), je relativně krátká doba pobytu vody v atmosféře (okolo 10 dní).[10] Proto nemá význam určovat CO2 ekvivalent vodní páry. Vodní pára má podstatný vliv na energetickou bilanci planety Země nejen pro svůj vysoký vliv na „globální oteplování“ jako „skleníkový plyn“, ale také na změny celkového albeda Země v důsledku tvorby oblaků. Přitom v závislosti na globální a lokální optické hustotě oblačnosti a denní době může být vliv oblačnosti na tepelnou bilanci kladný i záporný. Absorpční pásy jednotlivých skleníkových plynů se překrývají, proto je jejich podíl na celkovém skleníkovém efektu proměnlivý kvůli tomu, že hlavní skleníkový plyn vodní pára (H2O) má v nejvlhčích a horkých oblastech tropů až 100× vyšší koncentraci než v nejchladnějších polárních oblastech. Na vodní páru připadá 36 % až 70 % celkového skleníkového efektu atmosféry (dolní hodnota odpovídá její podílu, kdybychom vodní páru z atmosféry odstranili a horní hodnota stavu, když odstraníme všechny ostatní skleníkové plyny a zůstane jen H2O), na CO2 je to analogicky 9 % a 26 %, na methan 4 % a 9 % a na ozon 3 % a 7 % (je to v souladu s novějšími odhady účinku jednotlivých skleníkových plynů). Zatímco CO2 a CH4 jsou v atmosféře rozloženy vcelku rovnoměrně, vodní pára je soustředěna převážně v teplých oblastech Země a v dolní části troposféry (do výšky 2 km, přičemž do výšky 1,5 km je až 50 % z celkové vodní páry), ozón je rozložený v atmosféře mírně nerovnoměrně. [11]


Z tabulky[12] a grafu je možné vyčíst základní údaje o množství, příbytcích a nebezpečnosti hlavních skleníkových plynů. V současné době vědci intenzivně zkoumají, jak se mohou koncentrace výše zmíněných skleníkových plynů navzájem ovlivňovat a jakou souvislost mohou mít s globální teplotou, podobně jsou zkoumány změny oblačnosti.[13]

Snižování množství skleníkových plynůEditovat

Jednou z možností snížení produkce antropogenních skleníkových plynů jsou úspory energií a využívání obnovitelných zdrojů energie, jsou též diskutovány možnosti jaderné energetiky, u které jsou diskutabilní emise spojené s dobýváním paliva a výrobou reaktorů.[14] Současně lze umírněním tempa kácení lesů a závažnými zásahy do krajiny podpořit přeměnu oxidu uhličitého pomocí fotosyntézy.

Při porovnávání technologických procesů z hlediska množství emisí produkovaných skleníkových plynů je vždy nutné kalkulovat i s emisemi vyprodukovaných v průběhu procesu konstrukce, provozu i odstraňování zařízení a při obstarávání surovin a paliv potřebných v dané technologii.

OdkazyEditovat

ReferenceEditovat

  1. http://phys.org/news/2015-06-variations-atmospheric-oxygen-earth-climate.html - Variations in atmospheric oxygen levels shaped Earth's climate through the ages
  2. https://archive.ipcc.ch/publications_and_data/ar4/wg1/en/ch2s2-5-6.html - IPCC: Tropospheric Water Vapour from Anthropogenic Sources
  3. Miroslav Šuta: UNEP pro ochranu klimatu: Omezte emise sazí a prekurzorů ozónu, Ekofutura, 3/2012, str. 15-16
  4. https://data.worldbank.org/indicator/EN.ATM.CO2E.PC - Světová banka: CO2 emissions (metric tons per capita)
  5. https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions - CO₂ and other Greenhouse Gas Emissions, by Hannah Ritchie and Max Roser
  6. Jan Pretel, CCweb studie pro MŽP
  7. IPCC Fourth Assessment Report: Climate Change 2007 (AR4)
  8. Connor Nolan; et al. (2018). Past and future global transformation of terrestrial ecosystems under climate change. Science, 361 (6405): 920. doi: 10.1126/science.aan5360
  9. http://phys.org/news/2013-05-global-chlorofluorocarbons-carbon-dioxide.html - Global warming caused by chlorofluorocarbons, not carbon dioxide, new study says
  10. Water vapour: feedback or forcing? [online]. [cit. 2019-06-04]. Dostupné online. (anglicky) 
  11. Klimatická zmena a klimatické zmeny (zmena klímy a zmeny klímy), scenáre klimatickej zmeny, budúca klíma na Slovensku. www.dmc.fmph.uniba.sk [online]. [cit. 2019-06-04]. Dostupné online. 
  12. MILICH, L. The role of methane in global warming: where might mitigation strategies be focused?. [s.l.]: [s.n.], 1999. (anglicky) 
  13. https://phys.org/news/2017-05-climate-cloud-heights.html - Too soon to say if climate is changing cloud heights
  14. Nuclear Power and the Environment - Energy Explained, Your Guide To Understanding Energy - Energy Information Administration. www.eia.gov [online]. [cit. 2019-04-16]. Dostupné online. 

LiteraturaEditovat

  • VÍDEN, Ivan. Chemie ovzduší [online]. 1. vyd. Praha: VŠCHT, 2005 [cit. 2017-09-09]. Kapitola 14 Skleníkový efekt, s. 90-97 z 98. Dostupné online. ISBN 80-7080-571-4. 

Související článkyEditovat

Externí odkazyEditovat