Deltoid je konvexní čtyřúhelník, jež má právě dvě dvojice shodných sousedních stran. Má tvar (klasického létajícího) draka; ryze anglický termín pro deltoid je „kite“ (drak) a ryze německý výraz je „Drachenviereck“ (dračí čtyřúhelník).

Deltoid

VlastnostiEditovat

Deltoid ABCD je různoběžník (žádné dvě strany nejsou rovnoběžné), má dva páry shodných stran AB = AD, CB = CD, tyto shodné strany sdílí stejné vrcholy (A, C).

Úhlopříčky deltoidu jsou na sebe kolmé, mají různou velikost. Značíme je AC = e = d1, BD = f = d2. Úhlopříčka BD u deltoidu ABCD je úhlopříčkou AC půlena. Hlavní úhlopříčka AC dělí deltoid na dva shodné trojúhelníky a vedlejší na dva rovnoramenné trojúhelníky, mající tvar řeckého písmene delta, odtud název.

Deltoid je osově souměrný útvar podle přímky, na které leží úhlopříčka AC. Úhlopříčka AC je pak samodružný útvar.

Deltoidu lze vždy vepsat kružnici, je to tedy tečnový čtyřúhelník.

Zvláštní případyEditovat

 
Deltoid s pravými úhly u vrcholů vedlejší úhlopříčky

Jestliže úhly u vrcholů vedlejší úhlopříčky (β, δ) jsou pravé, řadíme jej mezi dvojstředové čtyřúhelníky (lze mu opsat i vepsat kružnici). [1]

Reuleauxovu trojúhelníku lze vepsat deltoid, jehož úhlopříčky mají stejnou délku.

 
Reuleauxův trojúhelník s vepsaným deltoidem

Speciální případ deltoidu je čtverec – právě když jsou všechny strany shodné AB = AD = BC = BD, všechny úhly jsou pravé a úhlopříčky AC = BD (jsou shodné); a kosočtverec – právě když jsou všechny strany shodné AB = AD = BC = BD a úhlopříčky AC = BD (jsou shodné).[2]

Obvod a obsahEditovat

Obvod   deltoidu se rovná součtu délek jeho stran  :

 

Obsah   deltoidu je roven

 ,

kde   jsou délky jeho úhlopříček. Pokud   jsou délky různých stran a   úhel jimi sevřený, pak

 

ReferenceEditovat

  1. GANT, P. A note on quadrilaterals. Mathematical Gazette. The Mathematical Association, 1944, s. 29–30. DOI:10.2307/3607362. (anglicky) 
  2. MRÁZOVÁ, Marta. Čtyřúhelníky [online]. Brno: 2008-12-05 [cit. 2021-07-16]. Dostupné online. 

Související článkyEditovat

Externí odkazyEditovat