Otevřít hlavní menu

Laplaceova transformace

Laplaceova transformace v matematice označuje jednu ze základních integrálních transformací. Používá se k řešení některých obyčejných diferenciálních rovnic, zejména těch, jež se objevují při analýze chování elektrických obvodů, harmonických oscilátorů a optických zařízení. V technice se s ní setkáme při studiu vlastností systémů spojitě pracujících v čase, kde je protějškem Z-transformace pro diskrétní systémy.

Užitečnost Laplaceovy transformace spočívá v tom, že převádí funkce reálné proměnné na funkce komplexní proměnné způsobem, při němž se mnohé složité vztahy mezi původními funkcemi radikálně zjednoduší.

Laplaceovu transformaci odvodil roku 1812 francouzský matematik Pierre Simon de Laplace. Již dříve (1737) však tuto transformaci použil Leonhard Euler při řešení jistých obyčejných diferenciálních rovnic.

DefiniceEditovat

Laplaceova transformaceEditovat

Nechť je funkce f(t) spojitá (nebo alespoň po částech spojitá) a definovaná na intervalu <0,∞). Pak Laplaceova transformace L{f(t)} funkce f(t) je definována integrálním vztahem:

 

kde s je komplexní nezávisle proměnná. Obraz funkce f(t) při Laplaceově transformaci je funkce jedné komplexní proměnné s, často ji značíme F(s). Definičním oborem F je oblast konvergence integrálu (viz níže).

Funkci f(t) nazýváme originálem a funkci F(s) obrazem funkce f(t).

Inverzní Laplaceova transformaceEditovat

Inverzní Laplaceova transformace je dána vztahem:

 ,

kde c je libovolné reálné číslo ležící v oblasti konvergence F (pak celá přímka Re(s)=c, přes niž se integruje, leží v oblasti konvergence (viz níže)).

Vlastnosti Laplaceovy transformaceEditovat

ExistenceEditovat

I v případě, že funkce f(t) je na celém intervalu <0,∞) spojitá a definovaná, nemusí její obraz existovat. Jestliže totiž má mít definiční integrál konečnou hodnotu, musí   splňovat kritérium konvergence  .

Například funkce   tuto podmínku nesplňuje, a proto její obraz neexistuje.

Oblast konvergenceEditovat

Pro danou funkci f se množina hodnot s, pro něž integrál v Laplaceově transformaci konverguje, nazývá oblast konvergence. Lze ukázat, že jestliže integrál konverguje pro f v bodě s0, pak konverguje v každém bodě s, pro který Re(s) > Re(s0). Oblast konvergence Laplaceovy transformace je tedy {s; Re(s) > R}, kde R je dáno chováním funkce f(t) pro t → ∞.

Vztah k inverzní Laplaceově transformaciEditovat

Pro každou funkci f takovou, že L{f} existuje, platí:

 

Vztah k derivaciEditovat

Výhodou použití Laplaceovy transformace pro počítání diferenciálních rovnic je její vztah k derivaci:

 

Vzorec lze odvodit pomocí integrace per partes a platí právě tehdy, když jednotlivé derivace existují. Tento vztah umožňuje přímé začlenění počátečních podmínek do výpočtu řešení diferenciální rovnice.

Základní vlastnosti Laplaceovy transformaceEditovat

Pro dané funkce f(t) a g(t), a jejich příslušné Laplaceovy transformace F(s) a G(s) následující tabulka shrnuje vlastnosti Laplaceovy transformace:

Vlastnosti jednostranné Laplaceovy transformace
Vzor Obraz Komentář
Linearita     Obrazem lineární kombinace vzorů je lineární kombinace obrazů s týmiž koeficienty. Odvodit lze na základě definičního vztahu. Této vlastnosti se využívá při odvozování goniometrických a hyperbolických funkcí.
Derivování podle parametru    
Derivování originálu     Získá se z integrování per partes.
Integrování originálu       je Heavisideova funkce.
Podobnost    
Tlumení    
Konvoluce    
Posunutí (věta o translaci)     Posunutí proměnné t v originále o konstantu a se projeví vynásobením obrazu výrazem  

Související článkyEditovat

Externí odkazyEditovat