Otevřít hlavní menu
Tento článek je o geometrickém útvaru. Další významy jsou uvedeny na stránce Rovina (rozcestník).

Rovina je v matematice dvourozměrný geometrický útvar, který si lze představit jako neomezenou dokonale rovnou plochu. Algebraicky vyjádřeno, jde o množinu bodů izomorfní s dvoudimenzionálním lineárním prostorem. Jinak řečeno jde o dvoudimenzionální afinní prostor.

Rovina může být určena třemi různými body, nebo přímkou a bodem, který leží mimo tuto přímku.

Obsah

ZnačeníEditovat

Rovina je buď plocha, na kterou se kreslí (nákresna), nebo se znázorňuje některým rovinným útvarem pomocí některého geometrických promítání. Rovina se označuje malým řeckým písmenem.

Znázornění:

 

Rovnice rovinyEditovat

Rovina je množina bodů prostoru, které vyhovují tzv. rovnici roviny, která může být zadána v různých tvarech.

Obecná rovnice rovinyEditovat

Obecná rovnice roviny má tvar

 ,

kde koeficienty   nejsou současně nulové a jsou to koeficienty normálového vektoru roviny (vektoru kolmého k rovině). Proměnné   jsou souřadnice bodu ležícího v rovině.

V případě, že známe tři body   určující rovinu, obecnou rovnici roviny získáme takto: spočteme vektory   a  , vypočítáme jejich Vektorový součin ze kterého získáme koeficienty   a napíšeme obecnou rovnici. Zbývající koeficient d získáme tak, že dosadíme souřadnice bodu K (nebo kteréhokoli jiného bodu ze zadání) do napsané rovnice.

Parametrické vyjádření rovinyEditovat

Parametrické vyjádření roviny má například vektorový tvar  , který se dá rozepsat dle složek takto:

 
 
 ,

kde   a   je bod, který leží v rovině a vektory   a   jsou nekolineární vektory ležící v rovině, tzn. jsou to směrové vektory roviny.

Úseková rovnice rovinyEditovat

Úsekovou rovnici roviny zapisujeme jako

 ,

kde   vymezují úseky vyťaté rovinou na osách  .

Srovnáním úsekové a obecné rovnice dostáváme  .

Normálová rovnice rovinyEditovat

Normálová rovnice roviny má tvar

 ,

kde   je vzdálenost počátku souřadného systému od roviny, tj. délka normály od počátku souřadnicového systému do průsečíku s rovinou,
  jsou směrové kosiny roviny,
  představují úhly, které svírají kladné souřadnicové poloosy s normálou roviny.
Normála je směrnice kolmá ve všech směrech k rovině.
Směrové kosiny lze vyjádřit z obecné rovnice jako

 
 
 

kde   pro   a pro   pro  .

Rovinný řezEditovat

Rovinným řezem geometrického útvaru   rovinou   se nazývá průnik roviny   a útvaru  .

Rovinný řez plochy rovinou, ve které leží normála plochy, se nazývá normálovým řezem plochy.

LiteraturaEditovat

  • Marcela Palková a kolektiv: Průvodce matematikou 2, Didaktis, Brno 2007, ISBN 978-80-7358-083-4, str. 107-109

Související článkyEditovat