Otevřít hlavní menu

Totální diferenciál

diferenciál aplikovaný na funkci několika proměnných

Totální diferenciál je v matematice diferenciál aplikovaný na funkci několika proměnných. Vyjadřuje závislost změny hodnoty funkce několika proměnných na malé změně jedné nebo více proměnných směrem od daného bodu. Tuto závislost aproximuje jako lineární funkci. Chyba této aproximace při malé změně proměnných musí být velmi malá (ve smyslu definice), jinak totální diferenciál neexistuje. Zkoumaná funkce tedy musí být dostatečně hladká. Jestliže totální diferenciál v daném bodě existuje, říkáme, že funkce v daném bodě má totální diferenciál neboli že je v daném bodě diferencovatelná.

Pokud v bodě existuje totální diferenciál funkce n proměnných , pak je to lineární funkce

,

kde

je parciální derivace funkce podle v bodě ,
je gradient funkce v bodě ,
je vektor změn jednotlivých nezávislých proměnných
a symbol značí skalární součin.


Obsah

DefiniceEditovat

Nechť   je funkce n reálných proměnných definovaná na jistém okolí bodu  . Totálním diferenciálem funkce   v bodě   nazýváme lineární funkci  , s níž lze funkci   v okolí bodu   aproximovat jako


 


tak, že pro chybu aproximace   platí


 .


Jestliže taková lineární funkce existuje, pak má tvar


 


a říkáme, že funkce   má v bodě   totální diferenciál neboli že je v bodě   diferencovatelná.

Podmínky a důsledky diferencovatelnostiEditovat

  • Jestliže má funkce   na jistém okolí bodu   spojité všechny parciální derivace, pak má v bodě   totální diferenciál.
  • Jestliže má funkce   v bodě   totální diferenciál, pak je v bodě   spojitá a má v něm směrovou derivaci v každém směru.

Geometrický významEditovat

  • Pro názornou interpretaci geometrického významu totálního diferenciálu budeme uvažovat 2D funkci   a bod, ve kterém budem zkoumat existenci totálního diferenciálu  .
  • Jelikož tato funkce splňuje podmínky existence totálního diferenciálu, musí platit  .
  • Abychom si znázornili totální diferenciál, vypustíme zbytkovou funkci  
  •  ,  ,  
  • Po dosazení za neznámé do rovnice a přeznačení   na   dostaneme  
  • Nyní se podívejme na grafy funkcí   a funkce  
  • Z grafu je vidět že geometrický význam totálního diferenciálu je rovina tečná k funkci   v bodě  
  • Pro funkci jedné proměnné představuje totální diferenciál tečnou přímku.

LiteraturaEditovat

  • Krbálek, Milan. Matematická analýza IV. 3., přeprac. vyd. V Praze: České vysoké učení technické, 2009, 252 s. ISBN 978-80-01-04315-8.