Otevřít hlavní menu

Regulační T lymfocyty jsou lymfocyty, které jsou součástí imunitního systému a patří do skupiny CD4+ buněk. Bez těchto buněk by se fyziologická odpověď imunitního systému zvrhla v patologickou. Regulační T lymfocyty potlačují rozvinutí autoimunitních chorob udržováním tolerance vůči tělu vlastním tkáním. Inhibují autoreaktivní lymfocyty, které unikly centrální toleranci v thymu a nastolují tak periferní toleranci. Je znám rovněž fakt, že regulační T lymfocyty brání odstranění rakovinných buněk, a tak přispívají k rozvoji nádoru.

Specifické markeryEditovat

K hlavním povrchovým molekulám patří CD25. IL-2 je totiž nezbytný pro generování T regulačních lymfocytů v thymu a pro jejich přežívání, expanzi i funkci. Dalšími molekulami jsou CTLA-4, což je negativní regulátor aktivace T buněk, a molekula GITR. Rovněž nízká exprese molekuly CD127 by mohla být spolehlivým markrem regulačních T buněk. Transkripční faktor Foxp3 je nezbytný pro správnou funkci regulačních T lymfocytů. U lidí mutace ve Foxp3 vede k multiorgánovému selhání a projevuje se rozvinutím syndromu IPEX.

Vývoj a rozděleníEditovat

Regulační T lymfocyty se vyvíjí v přítomnosti samotného TGF-β, který aktivuje expresi transkripčního faktoru Foxp3. Tato exprese indukuje produkci tlumivých cytokinů TGF-β a IL-10. Regulační T lymfocyty se rozdělují na přirozené a indukované. Přirozené regulační buňky jsou vytvářeny v thymu a tvoří 5 – 10 % z celkového počtu CD4+ buněk v thymu, lymfoidních tkáních a periferii. TGF-β dokáže v naivních CD4+ buňkách indukovat expresi Foxp3 a tak je konvertovat na regulační T lymfocyty. Těmto buňkám se pak říká indukované. Do skupiny indukovaných regulačních T lymfocytů patří podskupina Tr1 charakterizovaná velkou produkcí IL-10 a podskupina Th3, která produkuje TGF-β.

Mechanismy působeníEditovat

Je několik mechanismů působení regulačních T lymfocytů na buňky efektorové. Prvním mechanismem je suprese pomocí inhibičních cytokinů, což jsou IL-10, TGF-β a IL-35. Další z mechanismů je suprese cytolýzou, která vede k apoptóze. Zjistilo se totiž, že i lidské regulační T lymfocyty produkují granzym A a perforin. Dále je to ovlivnění metabolismu efektorových T buněk. Regulační T lymfocyty totiž exprimují ve vysoké míře CD25, což může vést k vyčerpání IL-2 a k jeho nedostatku pro efektorové buňky, pro které je tento cytokin rovněž důležitý. Poslední z mechanismů je modulace zrání a funkce dendritických buněk. Regulační T lymfocyty totiž mohou skrz interakci CTLA-4 s kostimulační molekulou CD80 a/nebo CD86 podmiňovat expresi indolamin 2,3-dioxygenázy (IDO) dendritickými buňkami. IDO indukuje katabolismus tryptofanu do pro-apoptotických tělísek a výsledkem je suprese efektorových buněk, pro které je aminokyselina tryptofan důležitá pro správnou proliferaci a diferenciaci.

RakovinaEditovat

Většina nádorů vyvolává v hostiteli imunitní odpověď, která je zprostředkována nádorovými antigeny, čímž se odlišuje nádor od ostatních nerakovinných buněk. Díky tomu se v nádorovém mikroprostředí nachází velké množství lymfocytů infilujících nádor (TIL, tumor-infiltrating lymphocytes).[1] Ačkoliv to stále není zcela pochopeno, předpokládá se, že jsou tyto lymfocyty namířeny proti rakovinným buňkám a tím zpomalují nebo zastavují růst nádoru. Tento proces je však komplikovaný, protože se zdá, že regulační T lymfocyty přednostně putují do mikroprostředí nádorů. Zatímco regulační T lymfocyty obvykle tvoří pouze asi 4 % CD4+ T buněk, mohou tvořit až 20-30 % z celkové populace CD4 + kolem nádorového mikroprostředí.[2]

Ačkoliv byla vysoká množství TIL původně považována za důležitý faktor při určování imunitní odpovědi proti rakovině, je nyní všeobecně známo, že poměr regulačních T lymfocytů k efektorovým T lymfocytům v nádorovém mikroprostředí je rozhodujícím faktorem pro úspěšnou imunitní odpověď proti nádoru. Velká množství regulačních T lymfocytů v nádorovém mikroprostředí jsou spojena se špatnou prognózou u mnoha nádorových onemocnění, jako je rakovina vaječníků, prsu, ledvin a pankreatu.[3] [2]To naznačuje, že regulační T lymfocyty potlačují efektorové T lymfocyty a zabraňují tak imunitní reakci těla proti nádoru. Nicméně u některých typů rakoviny je to naopak a velká množství regulačních T lymfocytů jsou spojena s pozitivní prognózou. Tento trend je patrný u nádorů, jako je kolorektální karcinom a folikulární lymfom. To může být způsobeno schopností regulačních T lymfocytů potlačit celkový zánět, o kterém je známo, že způsobuje proliferaci buněk a metastázy.[2] Tyto protikladné účinky ukazují, že úloha regulačních T lymfocytů ve vývoji rakoviny je vysoce závislá na typu a umístění nádoru.

Přestože stále není úplně pochopeno, jak regulační T lymfocyty přednostně putují do nádorového mikroprostředí, chemotaxe je pravděpodobně poháněna produkcí chemokinů nádorem. Infiltrace regulačních T lymfocytů do nádorového mikroprostředí je usnadněna vazbou chemokinového receptoru CCR4, který je exprimován na regulačních T lymfocytech, na jeho ligand CCL22, který je sekretován mnoha typy nádorových buněk.[4] Expanze regulačních T lymfocytů v místě nádoru může také vysvětlit jejich zvýšená množství. Je známo, že cytokin TGF-β, který je běžně produkován nádorovými buňkami, indukuje diferenciaci a expanzi regulačních T lymfocytů.[4]

Obecně platí, že imunosuprese nádorového mikroprostředí do značné míry přispěla k neúspěšným výsledkům mnoha imunoterapií nádorů. Deplece regulačních T lymfocytů u zvířecích modelů ukázala zvýšenou účinnost imunoterapií, a proto mnoho imunoterapeutických léčiv nyní zahrnuje degradaci regulačních T lymfocytů.[5]

LiteraturaEditovat

  • Seddiki N, Santner-Nanan B, Martinson J et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med 2006;203:1693–700.
  • Sakaguchi, S., N. Sakaguchi, M. Asano, M. Itoh & M. Toda (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol, 155, 1151-64.
  • Wildin, R. S., F. Ramsdell, J. Peake, F. Faravelli, J. L. Casanova, N. Buist, E. Levy-Lahad, M. Mazzella, O. Goulet, L. Perroni, F. D. Bricarelli, G. Byrne, M. McEuen, S. Proll, M. Appleby & M. E. Brunkow (2001) X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet, 27, 18-20.
  • Malek, T. R. & A. L. Bayer (2004) Tolerance, not immunity, crucially depends on IL-2. Nat Rev Immunol, 4, 665-74.
  • Sakaguchi, S., K. Wing & M. Miyara (2007) Regulatory T cells - a brief history and perspective. Eur J Immunol, 37 Suppl 1, S116-23.
  • Chen, W. & S. M. Wahl (2003) TGF-beta: the missing link in CD4+CD25+ regulatory T cell-mediated immunosuppression. Cytokine Growth Factor Rev, 14, 85-9.
  • Asseman, C., S. Mauze, M. W. Leach, R. L. Coffman & F. Powrie (1999) An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med, 190, 995-1004.
  • Cao, X., S. F. Cai, T. A. Fehniger, J. Song, L. I. Collins, D. R. Piwnica-Worms & T. J. Ley (2007) Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity, 27, 635-46.
  • Pandiyan, P., L. Zheng, S. Ishihara, J. Reed & M. J. Lenardo (2007) CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol, 8, 1353-62.
  • Fallarino, F., U. Grohmann, K. W. Hwang, C. Orabona, C. Vacca, R. Bianchi, M. L. Belladonna, M. C. Fioretti, M. L. Alegre & P. Puccetti (2003) Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol, 4, 1206-12.

ReferenceEditovat

  1. GOODEN, M. J. M.; DE BOCK, G. H.; LEFFERS, N. The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. British Journal of Cancer. 2011-06-28, roč. 105, čís. 1, s. 93–103. PMID: 21629244 PMCID: PMC3137407. Dostupné online [cit. 2019-02-19]. ISSN 1532-1827. DOI:10.1038/bjc.2011.189. PMID 21629244. 
  2. a b c OLEINIKA, K.; NIBBS, R. J.; GRAHAM, G. J. Suppression, subversion and escape: the role of regulatory T cells in cancer progression. Clinical and Experimental Immunology. 2013-1, roč. 171, čís. 1, s. 36–45. PMID: 23199321 PMCID: PMC3530093. Dostupné online [cit. 2019-02-19]. ISSN 1365-2249. DOI:10.1111/j.1365-2249.2012.04657.x. PMID 23199321. 
  3. CURIEL, Tyler J. Regulatory T cells and treatment of cancer. Current Opinion in Immunology. 2008-4, roč. 20, čís. 2, s. 241–246. PMID: 18508251 PMCID: PMC3319305. Dostupné online [cit. 2019-02-19]. ISSN 0952-7915. DOI:10.1016/j.coi.2008.04.008. PMID 18508251. 
  4. a b LIPPITZ, Bodo E. Cytokine patterns in patients with cancer: a systematic review. The Lancet. Oncology. 2013-5, roč. 14, čís. 6, s. e218–228. PMID: 23639322. Dostupné online [cit. 2019-02-19]. ISSN 1474-5488. DOI:10.1016/S1470-2045(12)70582-X. PMID 23639322. 
  5. CURIEL, Tyler J. Tregs and rethinking cancer immunotherapy. The Journal of Clinical Investigation. 2007-5, roč. 117, čís. 5, s. 1167–1174. PMID: 17476346 PMCID: PMC1857250. Dostupné online [cit. 2019-02-19]. ISSN 0021-9738. DOI:10.1172/JCI31202. PMID 17476346.