Otevřít hlavní menu

Převody číselEditovat

Převod z desítkové do osmičkové soustavyEditovat

Metoda postupného dělení 8 je používána pro převod celých čísel v desítkové soustavě do soustavy osmičkové a spočívá v postupném dělení číslem 8. Původní číslo celočíselně vydělíme číslem 8 a zvlášť si zapisujeme zbytky po tomto dělení – označme je jako  , kde   značí pořadí zbytku. Vzniklý podíl dále dělíme číslem 8 (a zapisujeme si zbytky po dělení) dokud podíl není roven nule. Po skončení dělení dostaneme číslo v osmičkové soustavě zapsáním pořadí zbytků v opačném pořadí (protože číslo zapisujeme zprava doleva, ale čteme zleva doprava)

Například: Mějme číslo 900 v desítkové soustavě, které chceme převést do osmičkové soustavy. Nechť symbol   znamená celočíselné dělení.

900 div 8 = 112 a   = 4

112 div 8 = 14 a   = 0

14 div 8 = 1 a   = 6

1 div 8 = 0 a   = 1

Zbytky po dělení zapisujeme zprava doleva – avšak číslo čteme zleva doprava. (Pořadí zbytků po dělení je 4, 0, 6, 1 ale zapisujeme je v pořadí 1, 6, 0, 4)

Výsledkem je: (900)10 = (1604)8

Vybrané zlomky v osmičkové soustavěEditovat

(1/2)10 = (0,4)8
(1/4)10 = (0,2)8
(1/8)10 = (0,1)8
(1/10)10 = (0,06341634163416341...)8
(1/16)10 = (0,04)8
(1/20)10 = (0,0314631463146...)8

Převod z osmičkové do desítkové soustavyEditovat

Převod z osmičkové soustavy do desítkové je konkrétním použitím obecného vztahu  

Například: Mějme číslo 2007 v osmičkové soustavě, které chceme převést do soustavy desítkové. Úpravou obecného vztahu do podoby   získáváme efektivní nástroj pro převod. (Opět pamatujme že číslo je zapsáno zprava doleva)

 

Výsledkem je: (2007)8 = (1031)10

Převod z osmičkové do binární soustavyEditovat

Převod mezi těmito soustavami je značně ulehčen díky tomu, že číslo 8 je mocninou dvojky. Jednoduše nahradíme každou číslici za její binární reprezentaci. Pro převod můžeme s výhodou použít následující tabulky:

Osmičková číslice 0 1 2 3 4 5 6 7
Binární reprezentace 000 001 010 011 100 101 110 111

Například: Převod čísla (1572)8 do dvojkové (binární) soustavy.

1 = 001

5 = 101

7 = 111

2 = 010

Výsledkem je: (1572)8 = (001101111010)2

Převod z binární do osmičkové soustavyEditovat

Převod je opět poměrně jednoduchý – zápis čísla v binární soustavě rozdělíme na skupiny po 3 bitech a pomocí předchozí tabulky převedeme na číslo v osmičkové soustavě.

Například: Převod čísla (011 111 011 000)2 do osmičkové soustavy.

011 = 3

111 = 7

011 = 3

000 = 0

Výsledkem je: (011 111 011 000)2 = (3730)8

Převod z osmičkové do hexadecimální soustavyEditovat

Převod mezi těmito dvěma soustavami je řešen pomocí 2 kroků. V prvním kroku převedeme číslo v osmičkové soustavě do soustavy binární, které ve druhém kroku převedeme do soustavy hexadecimální.

Související informace naleznete také v článku Hexadecimální soustava.

Převod z hexadecimální do osmičkové soustavyEditovat

Související informace naleznete také v článku Hexadecimální číslo.

Tento převod je také řešen pomocí 2 kroků, kdy v prvním kroku převedeme číslo v hexadecimální soustavě do soustavy binární a následně provedeme převod z binární do osmičkové soustavy.

Srovnání číselných soustavEditovat

Číselná soustava (základ)
10 2 3 4 5 6 7 8 9 12 16 20 36
1 1 1 1 1 1 1 1 1 1 1 1 1
2 10 2 2 2 2 2 2 2 2 2 2 2
3 11 10 3 3 3 3 3 3 3 3 3 3
4 100 11 10 4 4 4 4 4 4 4 4 4
5 101 12 11 10 5 5 5 5 5 5 5 5
6 110 20 12 11 10 6 6 6 6 6 6 6
7 111 21 13 12 11 10 7 7 7 7 7 7
8 1000 22 20 13 12 11 10 8 8 8 8 8
9 1001 100 21 14 13 12 11 10 9 9 9 9
10 1010 101 22 20 14 13 12 11 A A A A
100 1100100 10201 1210 400 244 202 144 121 84 64 50 2S
1000 1111101000 1101001 33220 13000 4344 2626 1750 1331 6B4 3E8 2A0 RS

OdkazyEditovat

Související článkyEditovat

Externí odkazyEditovat