Topologická grupa je matematický objekt, který má jak strukturu grupy, tak i topologického prostoru, přičemž se požaduje, aby obě struktury byly vzájemně kompatibilní. Příkladem topologické grupy je množina jednotkových komplexních čísel (kružnice) s operací násobení, reálná čísla s operací sčítání, Lieovy grupy, anebo množina racionálních čísel spolu s operací sčítání.

Formální definice

editovat

Topologická grupa   je topologický prostor a grupa pro který platí, že grupová operace

 

a grupová inverze

 

jsou spojitá zobrazení.   je tady topologický prostor se součinovou topologií.

Někteří autoři navíc požadují, aby topologie na   byla Hausdorfova.

V jazyku teorie kategorií, topologické grupy se definují jako grupové objekty v kategorii topologických prostorů, podobně jako běžné grupy jsou grupové objekty v kategorii množin.

Externí odkazy

editovat