Tabulka pravdivostních hodnot základních složených výroků

Pravdivostní tabulka je tabulka sestávající z dvou hodnot: 0 (nepravda) a 1 (pravda).

Zde můžete najít pravdivostní tabulky pro základní logické operace.

Unární operace

editovat

Existují 4 unární operace

Logická nepravda

editovat

Logická nepravda je unární logická operace, jejíž hodnota je nepravda právě tehdy, když vstupní hodnota je pravda nebo nepravda.

Pravdivostní tabulka logické nepravdy:

A F
1 0
0 0

Logická identita

editovat

Logická identita je unární logická operace, jejíž hodnota je pravda právě tehdy, když vstupní hodnota je pravda (analogicky platí pro hodnotu nepravda).

Pravdivostní tabulka logické identity:

A a
1 1
0 0

Logická negace

editovat

Logická negace (používá se symbol  ¬ nebo NON) je unární logická operace, jejíž hodnota je nepravda právě tehdy, když první vstupní hodnota je pravda a naopak.

Pravdivostní tabulka logické negace:

A ¬A
1 0
0 1

Logická pravda

editovat

Logická pravda je unární logická operace, jejíž hodnota je pravda, právě tehdy, když vstupní hodnota je pravda nebo nepravda.

Pravdivostní tabulka logické pravdy:

A T
1 1
0 1

Binární operace

editovat

Existuje 16 možných pravdivostních funkcí pro dvě binární proměnné.

Pravdivostní tabulka pro všechny binární logické operátory

editovat

Zde se nachází tabulka poskytující definice všech 16 možných pravdivostních operaci (A a B jsou booleovské proměnné, detaily o operátorech viz klíč):

A B F NOR Xb ¬A ¬B XOR NAND AND XNOR b AB a B⇒A OR T
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
Kom
L id 0 0 1 1 1,0 1 0
P id 0 0 1 1 1,0 1 0
číslo sloupce 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

kde 1=pravda a 0=nepravda. Řádek označený Kom udává jestli je operátor (op) komutativní – A op B = B op A. Řádek označený L id udává levé identity operátoru, jestliže nějaké má – hodnoty I kde I op B=B. Řádek označení P id udává pravé identity operátoru, jestliže nějaké má – hodnoty I kde A op I=A.

Klíč je orientovaný po sloupcích. Jsou zde 2 sloupce, které udávají 4 možné kombinace A a B.

A B
1 1
1 0
0 1
0 0

16 zbylých sloupců obsahuje každý jednu pravdivostní operaci dvou binárních proměnných, v následující tabulce bude každý z těchto sloupců uvedený do řádku:

číslo sloupce [1] operátor název operace
0 (0 0 0 0)(a,b) false, Oab Kontradikce
1 (0 0 0 1)(a,b) NOR a ↓ b, Xab Negovaný logický součet NOR
2 (0 0 1 0)(a,b)   a  b,Mab Zpětná inhibice
3 (0 0 1 1)(a,b) ¬a, ~a ¬a, Na, Fab Logická negace
4 (0 1 0 0)(a,b)   a   b, Lab Přímá inhibice
5 (0 1 0 1)(a,b) ¬b, ~b ¬b, Nb, Gab Logická negace
6 (0 1 1 0)(a,b) XOR a ⊕ b, Jab Exklusivní disjunkce
7 (0 1 1 1)(a,b) NAND a ↑ b, Dab Negovaný logický součin NAND
8 (1 0 0 0)(a,b) AND a ∧ b, Kab Konjunkce
9 (1 0 0 1)(a,b) XNOR a právě tehdy když b, Eab Ekvivalence
10 (1 0 1 0)(a,b) b b, Hab Logická identita
11 (1 0 1 1)(a,b) a⇒ b jestliže a potom b, Cab Implikace
12 (1 1 0 0)(a,b) a a, Iab Logická identita
13 (1 1 0 1)(a,b) b ⇒ a a jesliže b, Bab Zpětná implikace
14 (1 1 1 0)(a,b) OR a ∨ b, Aab Disjunkce
15 (1 1 1 1)(a,b) pravda, Vab Logická pravda

Logické operátory je také možné vyjádřit pomocí Vennových diagramů.

Konjunkce

editovat

Konjunkce (používají se symboly AND, & nebo ʌ) je binární logická operace jejíž hodnota je pravda, právě když obě vstupní hodnoty jsou pravda.

A B AʌB
1 1 1
1 0 0
0 1 0
0 0 0

Čteme "A a B".

Disjunkce

editovat

Disjunkce (používají se symboly OR nebo  ∨) je binární logická operace, jejíž hodnota je pravda, právě když alespoň jedna vstupní hodnota je pravda.

A B A∨B
1 1 1
1 0 1
0 1 1
0 0 0

Čteme "A nebo B".

Implikace

editovat

Implikace (používá se symbol ⇒) je binární logická operace, jejíž hodnota je nepravda, právě když první vstupní hodnota je pravda a druhá nepravda. Ve vztahu A⇒B (A implikuje B) označujeme A za předpoklad (premisu) a B za závěr.

A B A⇒B
1 1 1
1 0 0
0 1 1
0 0 1

Čteme "když A, tak B", "jestliže A, pak B", přesněji "A implikuje B".

Ekvivalence

editovat

Ekvivalence (používá se symbol ⇔) je binární logická operace, jejíž hodnota je pravda, právě když obě vstupní hodnoty jsou stejné, tj. obě pravda nebo obě nepravda.

A B A⇔B
1 1 1
1 0 0
0 1 0
0 0 1

Exkluzivní disjunkce

editovat

Exkluzivní disjunkce (nonekvivalence, používá se symbol ⊕ nebo XOR) je binární logická operace, jejíž hodnota je pravda, právě když vstupní hodnoty jsou různé, tj. pravda a nepravda nebo nepravda a pravda.

A B A⊕B
1 1 0
1 0 1
0 1 1
0 0 0

Logické NAND

editovat

Logické NAND (Shefferova funkce) je binární logická operace, jejíž hodnota je nepravda právě tehdy, když jsou obě vstupní hodnoty pravda. Je to univerzální spojka, pomocí ní lze vytvořit všechny ostatní funkce, čehož se využívá v elektronice.

A B A ↑ B
1 1 0
1 0 1
0 1 1
0 0 1

Můžeme snadno nahlédnout, že NAND je vlastně složení dvou operací – NOT a AND. Negaci konjunkce ¬(A ∧ B) a disjunkci negací (¬A) ∨ (¬B) lze zapsat do pravdivostní tabulky takto:

A B A ∧ B ¬(A ∧ B) ¬A ¬B (¬A) ∨ (¬B)
1 1 1 0 0 0 0
1 0 0 1 0 1 1
0 1 0 1 1 0 1
0 0 0 1 1 1 1

Logické NOR

editovat

Logické NOR (Pierceova funkce) je binární logická operace, jejíž hodnota je pravda právě tehdy, když jsou obě vstupní hodnoty nepravda. Tedy hodnota logického NOR je nepravda právě tehdy,když alespoň jedna ze vstupních hodnot je pravda. Je to druhá univerzální spojka, pomocí ní lze vytvořit všechny ostatní funkce.

A B A ↓ B
1 1 0
1 0 0
0 1 0
0 0 1

Negace disjunkce ¬(A ∨ B) a konjunkce negací (¬A) ∧ (¬B) lze zapsat do pravdivostní tabulky takto:

A B A ∨ B ¬(A ∨ B) ¬A ¬B (¬A) ∧ (¬B)
1 1 1 0 0 0 0
1 0 1 0 0 1 0
0 1 1 0 1 0 0
0 0 0 1 1 1 1

Pravdivostní tabulka nejčastěji používaných logických operátorů

editovat

Zde je pravdivostní tabulka 6 z 16 možných pravdivostních operací 2 binárních proměnných.

A B              
1 1 1 1 0 1 1 1 1
1 0 0 1 1 0 0 1 0
0 1 0 1 1 0 1 0 0
0 0 0 0 0 1 1 1 1
1=pravda, 0 = nepravda
  = AND (konjunkce)
  = OR (disjunkce)
  = XOR (exkluzivní disjunkce)
  = XNOR (ekvivalence)
  = implikace
  = zpětná implikace
  ekvivalentní k  
  ekvivalentní k ⊕

Reference

editovat