Sloupcový vektor

Sloupcový vektor nebo sloupcová matice v lineární algebře je matice velikosti m × 1, tj. matice sestávající z jediného sloupce s m prvky:

Transpozicí sloupcového vektoru je řádkový vektor a naopak:

Množina všech sloupcových vektorů s daným počtem prvků vytváří vektorový prostor, který je duálním prostorem k množině všech řádkových vektorů se stejným počtem prvků.

ZápisEditovat

V anglicky psané literatuře se pro matice a vektory obvykle používají hranaté závorky:

 

Aby bylo možné zapisovat sloupcové vektory do stejného řádku jako zbytek vzorce, zapisují se někdy jako řádkové vektory, na které je aplikována operace transpozice.

 
nebo
 

Pro další zjednodušení někteří autoři používají konvenci pro zápis jak sloupcových tak řádkových vektorů jako řádky, ale prvky řádkových vektorů oddělují čárkami a sloupcových středníky (viz alternativní zápis 2 v tabulce níže).

Řádkový vektor Sloupcový vektor
Standardní maticový zápis    
Alternativní zápis 1    
Alternativní zápis 2    

OperaceEditovat

  • Násobení matic spočívá ve znásobení každého řádkového vektoru jedné matice každým sloupcovým vektorem druhé matice.
  • Skalární součin dvou vektorů a a b je ekvivalentní s násobením řádkového vektoru a sloupcovým vektorem b:
 

Související článkyEditovat

ReferenceEditovat

V tomto článku byl použit překlad textu z článku Column vector na anglické Wikipedii.

  • AXLER, Sheldon Jay. Linear Algebra Done Right. 2nd. vyd. [s.l.]: Springer-Verlag, 1997. ISBN 0-387-98259-0. 
  • LAY, David C. Linear Algebra and Its Applications. 3rd. vyd. [s.l.]: Addison Wesley, August 22, 2005. ISBN 978-0-321-28713-7. 
  • MEYER, Carl D. Matrix Analysis and Applied Linear Algebra. [s.l.]: Society pro Industrial a Applied Mathematics (SIAM), February 15, 2001. Dostupné v archivu pořízeném dne 2001-03-01. ISBN 978-0-89871-454-8. 
  • POOLE, David. Linear Algebra: A Modern Introduction. 2nd. vyd. [s.l.]: Brooks/Cole, 2006. ISBN 0-534-99845-3. 
  • ANTON, Howard. Elementary Linear Algebra (Applications Version). 9th. vyd. [s.l.]: Wiley International, 2005. 
  • LEON, Steven J. Linear Algebra With Applications. 7th. vyd. [s.l.]: Pearson Prentice Hall, 2006. 
Související informace naleznete také v článku Lineární algebra#Literatura.