Otevřít hlavní menu

Riemannova funkce zeta, označovaná pomocí řeckého písmene ζ jako ζ(s), je důležitý pojem v analytické teorii čísel. Zavedl ji v roce 1859 německý matematik Bernhard Riemann. Tato funkce je ústředním pojmem tzv. Riemannovy hypotézy, která patří k nejdůležitějším nevyřešeným problémům současné matematiky.

DefiniceEditovat

Zeta funkce je definována jako součet nekonečné řady (zvané zpravidla Dirichletova řada):

 

Tato řada konverguje pro všechna komplexní čísla, jejichž reálná část je větší než 1, a Riemann ukázal, jak lze tuto funkci rozšířit na množinu všech komplexních čísel různých od 1.

VlastnostiEditovat

Je-li s ≤ 1, řada diverguje:

  • je-li s = -1, pak
 
  • je-li s = 0, pak
 
  • je-li s = 1/2, pak
 
  • je-li s = 1, pak
 , což je tzv. harmonická řada

Je-li s > 1, řada absolutně konverguje:

  • je-li s = 2, pak
 

Zeta funkce je pro   rovna tzv. Eulerovu součinu:

 , kde P je množina všech prvočísel.

Tento součin se poprvé objevil, i když v trochu jiném tvaru, v článku s názvem Variae observationes circa series infinitas („Různé poznámky o nekonečných řadách“) napsaném Leonhardem Eulerem [1].
Důkaz této rovnosti je vlastně postup, jakým Euler k této souvislosti došel, a je následující:
Funkce zeta na levé straně je pro připomenutí ve tvaru

 

Nyní vynásobíme obě strany rovnosti číslem   a dostaneme

 

Tento výraz odečteme od předchozího, což nám dá

 

Odečtení vyloučilo všechny členy se sudým jmenovatelem a zůstaly nám jen členy s lichým jmenovatelem. Pokračujeme tak, že obě strany vynásobíme číslem  :

 

Nyní odečteme tento výraz od předchozího:

 

Z nekonečného součtu zmizely všechny násobky tří. Dále vynásobíme obě strany číslem  :

 

Odečtením dostaneme

 

Je vidět, že při odčítání pravých stran vynecháváme samotné prvočíslo spolu s jeho násobky. Kdybychom v tomto postupu pokračovali až do nekonečna, je zřejmé, že dojdeme k rovnosti

 

Vydělením obou stran této rovnice postupně všemi výrazy v závorkách dostaneme výsledný vzorec, který jsme chtěli dokázat

 

Jak součet na levé straně, tak i součin na pravé pokračují do nekonečna. To ve skutečnosti poskytuje důkaz, že prvočísel je nekonečně mnoho. Kdyby jich totiž byl konečný počet, pak by i součin na pravé straně měl konečný počet členů a pro každé číslo s by měl určitou konečnou hodnotu. Když s = 1, pak na levé straně dostaneme harmonickou řadu, která diverguje. A protože nekonečno na levé straně rovnice se nemůže rovnat konečnému číslu napravo, musí být prvočísel nekonečně mnoho.

Rozšíření definičního oboruEditovat

Nekonečná řada může definovat funkci jen na části jejího definičního oboru a právě tohle platí i pro funkci zeta ve smyslu analytického prodloužení původní Dirichletovy řady. Funkce zeta má totiž konečné hodnoty pro všechny komplexní argumenty s ≠ 1.

Následuje základní myšlenka, jak zjistit hodnoty funkce   pro s < 1. Nejdříve se zavede nová funkce

 

Tato nekonečná řada se nazývá alternující řada a konverguje pro s > 0.
Řadu   lze zapsat jako

 

minus

 

kde první závorka je vlastně  . Vytknutím   z druhého výrazu a úpravou vznikne

 

Vyjádřením   vyjde ke vztah

 

ze kterého je možné vypočítat hodnoty   pro s mezi 0 a 1. V 0 je hodnota funkce zeta rovna -1/2.

Nyní je třeba zjistit, jak je to s argumenty funkce zeta, které jsou menší než 0. V Riemannově článku z roku 1859 je důkaz vzorce, kterou poprvé navrhl Euler v roce 1749 a která vyjadřuje   pomocí  :

 

Tímto vztahem se vypočítají hodnoty funkce zeta pro záporná celá čísla s.
Aby však bylo možná spočítat hodnoty funkce zeta pro všechna reálná s < 0, je nutné použít následující vzorec

 

který dokázal Riemann v roce 1859. Velké písmeno řecké abecedy   v této rovnici je funkce funkce gama, která je rozšířením faktoriálu do reálných a komplexních čísel.

Vybrané hodnoty analytického prodloužení
  •  
  •  
  •  [2]
  • pro s = 1 diverguje:  .

Nulové bodyEditovat

Související informace naleznete také v článcích Riemannova hypotéza a Věta o kritické přímce.

Nulové body Riemannovy funkce zeta jsou taková komplexní čísla s, pro která  . Lze je rozdělit na

  • triviální – všechna sudá záporná celá čísla
  • netriviální – ostatní, leží v tzv. kritickém pásu, což je množina komplexních čísel, jejichž reálná část leží v otevřeném intervalu (0, 1).

Podle Riemannovy hypotézy leží všechny netriviální nuly na tzv. kritické přímce, což je přímka tvořená komplexními čísly s reálnou částí rovnou 1/2.

Netriviální nulové body velice úzce souvisí s rozložením prvočísel mezi přirozenými čísly.

ReferenceEditovat

  1. SANDIFER, C. E. The Early Mathematics of Leonhard Euler. [s.l.]: The Mathematical Association of America, 2007. 
  2. SLOANE N. J. A.: The On-Line Encyclopedia of Integer Sequences, poslounost A059750. Dostupné online (anglicky)

LiteraturaEditovat

  • DERBYSHIRE, John. Posedlost prvočísly. Praha: Academia, 2007. 
  • DEVLIN, Keith. Problémy pro třetí tisíciletí. Praha: Argo, Dokořán, 2005.