Prvoideál (teorie okruhů)

podmnožina okruhu s určitými vlastnostmi

Prvoideálem v okruhu je každý takový vlastní ideál , že pro libovolné dva ideály splňující (tedy jejichž součin je podmnožinou ) platí buď nebo .

Jedná se o analogii prvočísel, u kterých lze obdobně vyslovit: Přirozené číslo je prvočíslem právě tehdy, pokud pro jakákoliv dvě přirozená čísla platí, že pokud dělí , pak buď dělí nebo dělí .

PříkladyEditovat

  • Ideál   je prvoideálem pravě když je   prvočíslo
  • V okruhu   všech polynomů s koeficienty z celých čísel je prvoideálem například ideál generovaný prvky 2 a X (jedná se o ideál tvořený všemi polynomy, které mají konstantní koeficient sudý).
  • Každý maximální ideál je prvoideálem

ReferenceEditovat

V tomto článku byl použit překlad textu z článku Prime ideal na anglické Wikipedii.