Ideál (teorie okruhů)

(přesměrováno z Ideál (algebra))

Ideál je matematický pojem z oblasti algebry označující podmnožinu nějakého okruhu s jistými „dobrými“ vlastnostmi.


DefiniceEditovat

Množina  , kde R je okruh, se nazývá levý resp. pravý ideál, má-li následující vlastnosti:

  • pro každé   je také  
  • pro každé   a každé   je také   resp.  

Je-li ideál zároveň levý i pravý, nazývá se oboustranný ideál, nebo prostě jen ideál.


Nechť (R, +, •) je okruh, M je libovolná podmnožina množiny R. Potom průnik všech ideálů v R, které obsahují množinu M, je ideál v R, který se nazývá ideálem generovaným množinou a značí se [M]. Množina M se nazývá systém generátorů ideálu [M] a její prvky generátory tohoto ideálu.


Prázdná množina generuje v libovolném okruhu nulový ideál R.


Příklady ideálůEditovat

  • V každém okruhu R jsou množiny {0} a R ideály. Tyto ideály se nazývají triviální ideály v R. Ideál, který není triviální se nazývá netriviální nebo také vlastní.
  • Každá podmnožina tvaru   je ideál v R. Ideály tvaru (a) se nazývají hlavní ideály v R.
  • V okruhu celých čísel je množina všech sudých čísel ideálem, konkrétně hlavním ideálem (2).
  • Libovolný podokruh komutativního okruhu nemusí být jeho ideálem. Například v okruhu racionálních čísel (Q,+,•) tvoří celá čísla podokruh (Z,+,•). Ten však není ideálem v Q, neboť nesplňuje podmínku: pro každé   a každé   je také   resp.  . Stačí volit třeba  , pak   a  


Operace s ideályEditovat

  • průnik ideálů I,J je ideál  , který je největším ideálem, obsaženým v obou ideálech I,J.
  • součet ideálů I,J je ideál  , který je nejmenším ideálem obsahujícím oba ideály I,J.
  • součin ideálů I,J je ideál  


VlastnostiEditovat

  • Ideál I v okruhu R se nazývá maximální ideál, je-li   a pro každý ideál J, že  , je I = J nebo J = R.
  • Ideál I v okruhu R se nazývá prvoideál, jestliže pro každé   takové, že  , je buďto   nebo  .
  • Jsou-li   … ,   libovolné prvky z ideálu I v okruhu R, je každá jejich lineární kombinace s koeficienty z R prvkem ideálu I, tj.  … ,     .


Příklad:

V okruhu celých čísel Z máme určit ideál I = [96, 14]. Snažíme se v tomto ideálu najít nenulové číslo s co nejmenší absolutní hodnotou. Musí být 1 • 96 + (- 6) •14 = 12 ∈ I a též 1 • 14 + (- 1) •12 = 2 ∈ I . Podle druhé podmínky (viz výše) obsahuje I všechny celočíselné násobky čísla 2, tj. všechna sudá čísla. Protože podle definice ideálu (Podmnožina I okruhu R je ideálem v právě tehdy, když je neprázdná a platí pro ni podmínky viz výše) množina všech sudých čísel tvoří zřejmě ideál v Z, je I = {..., -6, -4, -2, 0, 2, 4, 6, ...}.

Týž ideál může mít různé systémy generátorů. Např. ideál I z předchozího příkladu je generován číslem 2, tj. I = [2], a též například I = [6, 8, -10].


Platí věta: Každý maximální ideál je prvoideál. Opačné tvrzení v obecném případě neplatí, tj. existují prvoideály, které nejsou maximální. Pokud však R je číselný okruh (tj. podokruh okruhu komplexních algebraických celých čísel), je každý prvoideál v R maximálním ideálem.

  • Ideály jsou právě ty množiny, faktorizací podle nichž vznikne z okruhu opět okruh.
  • Prvoideály jsou právě ty množiny, faktorizací podle nichž vznikne z okruhu obor integrity.
  • Maximální ideály jsou právě ty množiny, faktorizací podle nichž vznikne těleso.


VětaEditovat

Nechť R je okruh s jednotkovým prvkem a nechť   . Pak ideál [M] se skládá právě ze všech prvků tvaru  … ,     , tj. [M] = I, kde    .


Příklad užití této věty

V okruhu Z[x] polynomů jedné neurčité s celočíselnými koeficienty máme sestrojit ideál [x, 2]. Podle věty výše (v Z[x] existuje jednotkový prvek) se tento ideál skládá ze všech prvků tvaru:   kde  .

Tedy [x, 2] je množina všech polynomů   , jejíž člen a0 je sudé číslo. Ideál [x, 2] je tudíž vlastní podmnožina v Z[x].


ZdrojeEditovat

BLAŽEK, Jaroslav, Milan KOMAN a Blanka VOJTÁŠKOVÁ. Algebra a teoretická aritmetika. 1. vyd. Praha: Státní pedagogické nakladatelství, 1985, 258 s. Učebnice pro vysoké školy (Státní pedagogické nakladatelství).


Související článkyEditovat