Ekvivalence (logika)

binární logický operátor s významem „právě tehdy, když“
(přesměrováno z Nonekvivalence)

Název ekvivalence je v logice používán pro binární logický operátor značený symbolem ⇔ ().

Významově odpovídá tento operátor větné konstrukci „právě tehdy, když“ (anglicky if and only if) — ekvivalence tedy říká, že spojovaná tvrzení platí pouze zároveň (obě ano, nebo obě ne). Tomu odpovídá i pravdivostní tabulka této operace.

Pravdivostní tabulkaEditovat

     
0 0 1
0 1 0
1 0 0
1 1 1

Vlastnosti a použitíEditovat

Ekvivalence je používána v logických výpočtech podobným způsobem, jako relace = v aritmetických výpočtech — takový výpočet je obvykle posloupnost ekvivalencí, jako v následujícím případě:
 

Pravdivostní hodnota ekvivalence je shodná s pravdivostní hodnotou oboustranné implikace, tj. následující dvě formule mají stejnou pravdivostní tabulku:

  •  
  •  

V dvouhodnotové extenzionální logice je pravdivostní hodnota ekvivalence inverzní k pravdivostní hodnotě exkluzivní disjunkce, tj. následující dvě formule mají stejnou pravdivostní tabulku:

  •  
  •  

Pomůcka k pochopení funkce ekvivalence v matematiceEditovat

Oba členy ekvivalence představují totéž vyjádřené různými slovy. Jejich pravdivostní hodnoty nejsou tedy závislé na dočasnosti či smyslovém vnímání a hodí se proto k použití v matematice.

Např.:

"Máme dokázat že relace   je ekvivalencí na množině výroků M. Množinu M můžeme rozložit na třídy M1 (pravdivých výroků) a M2 (nepravdivých výroků).   značí: A i B patří do stejné třídy, tedy buď A, B jsou prvky M1 nebo A, B jsou prvky M2. Vztahem   je dán rozklad na množině M (na třídy M1, M2), a tedy vztah   je ekvivalence příslušná tomuto rozkladu."[1]


ReferenceEditovat

  1. HOŘEJŠOVÁ, Milena. Řešené příklady z matematiky pro VŠE. Praha: SNTL/ALFA, 1980. Kapitola Základní pojmy matematiky, s. 13. 

Související článkyEditovat