Meneláova věta je tvrzení afinní geometrie o trojúhelnících tradičně připisované starořeckému matematikovi Menelaovi Alexandrijskému. Je duální k Cévově větě.

Příklad přímky EDF v případě, kdy protíná trojúhelník
Příklad přímky EDF v případě, kdy neprotíná trojúhelník


Znění Meneláovy věty

editovat

Máme-li dány body A,B a C, které tvoří trojúhelník ABC, a jiné body D, E a F, které leží na přímkách BC, AC a AB, pak body D, E a F leží na přímce právě tehdy, když platí

 

V tomto výrazu uvažujeme délky úseček se znaménkem, které je dáno tím, nacházejí-li se body D, E a F uvnitř patřičných úseček, nebo vně. Například podíl AF/FB je kladný právě tehdy, pokud bod F leží na úsečce AB.

Nejdříve ověříme znaménko levé strany a ukážeme, že musí být vždy záporné. To plyne z toho, že přímka buď trojúhelník neprotne vůbec, nebo jej protne právě ve dvou bodech (viz Paschův axiom). Na levé straně je tedy lichý počet záporných zlomků a jejich součin bude vždy záporný.

Spustíme kolmice a, b a c z bodů A, B a C na přímku DEF. Z podobnosti trojúhelníků plyne, že

 
 
 

tedy

 

Ještě zbývá dokázat, že pokud by body na přímce neležely, pak rovnost neplatí. Uvažujme bod X na přímce AB, který je různý od bodu F. Označme AF, AX a AB po řadě jako n, n', s. Předpokládejme, že rovnost platí i pro X. Pak platí

 

neboli

 

odkud uvedením na společného jmenovatele a zjednodušením dostaneme  . Tedy  , čímž je důkaz hotov.

Externí odkazy

editovat