Malý modulární reaktor

Malé modulární reaktory[pozn. 1] jsou definovány Mezinárodní agenturou pro atomovou energii (MAAE) jako pokročilé reaktory o elektrickém výkonu až 300 MWe na jeden výkonový modul.[1] SMR jsou jaderné reaktory, které jsou rozměrově menší než konvenční jaderné reaktory. Díky jejich velikosti mohou být jejich komponenty továrně vyráběny v jedné lokalitě a následně dopravovány na místo výstavby jaderného zařízení, kde jsou následně sestaveny do elektrárenského celku. Název SMR plyne z procesů jejich výroby, velikosti, modulární konstrukce a neodkazuje na typ reaktoru a využívaný jaderný proces.[2]

Integrální malý modulární reaktor VOYGR

SMR jsou zástupci pokročilé generace reaktorů III+ a více. Tyto reaktory přináší oproti předchozím generacím vylepšení v oblasti jaderné bezpečnosti a tak obsahují v současné době nejlepší dostupné jaderné technologie. Zvýšení úrovně jaderné bezpečnosti dosahují SMR především implementací pasivních bezpečnostních systémů, které ke svému fungování využívají fyzikální principy a jsou nezávislé na lidském faktoru.[3] Mezi reaktory III+ generace spadají převážně lehkovodní reaktory jako je UK SMR, SMR-160 a BWRX-300. Do generace IV spadají vysokoteplotní plynem chlazené reaktory, rychlé reaktory chlazené tekutými kovy a reaktory založené na roztavených solích.[4]

V roce 2023 je ve vývoji přes 80 SMR celkově v 19 zemích světa. První komerční plovoucí SMR byl uveden do provozu v Rusku 22. května 2020 v elektrárně Akademik Lomonosov[5] a první komerční SMR na pevnině byl uveden do provozu v prosinci 2021 v čínské elektrárně Shidao Bay.[6]

Zjednodušené technologické schéma integrálního tlakovodního SMR

Typy malých modulárních reaktorů editovat

Tlakovodní SMR na lehkou vodu editovat

Tlakovodní typ reaktorů (PWR) je světově nejrozšířenějším typem jaderných reaktorů – tvoří 60 % z celkového počtu reaktorů ve světě.[7] Palivem těchto reaktorů je oxid uraničitý (UO2), který je pro evropské jaderné reaktory, pracující na tepelných neutronech, zpravidla obohacován izotopem uranu 235U do 5 %[8] a to kvůli přepravním možnostem při výrobě obohaceného paliva. Tato hladina obohacení je stanovena normami ISO 7195, ANSI N14.1 a ASTM C-996-15.

Štěpná řetězová reakce probíhající v primárním okruhu je moderována demineralizovanou lehkou vodou. Demineralizovaná lehká voda zároveň působí jako teplonosné médium (chladicí médium) a odvádí teplo vzniklé v aktivní zóně reaktoru do parogenerátoru, kde se tepelná energie přenáší do sekundárního okruhu (okruhu páry). Tlak vody v primárním okruhu se u tlakovodních SMR pohybuje v rozmezí od 12 do 17 MPa a teplota v rozmezí 250–330 °C[9][pozn. 2]. Velký tlak je využíván pro zvýšení bodu varu a tím zlepšení odvodu tepla z reaktoru.

Tlakovodní SMR vznikají také v integrální verzi tohoto typu reaktoru (iPWR). Tyto reaktory dosahují zvýšené bezpečnosti integrací parogenerátoru, kompenzátoru objemu a mechanizmů řídicích tyčí do tlakové nádoby reaktoru.[10]

 
Uvažované designy SMR pro výstavbu v České republice byly zmíněny na 6. ročníku studentské konference CENELÍN v rámci prezentace Skupiny ČEZ.

Varné SMR editovat

Varné reaktory (BWR) také používají demineralizovanou lehkou vodu jako moderátor i chladivo. Na rozdíl od tlakovodních reaktorů je voda v primárním okruhu uváděná do varu a ve formě páry předává svoji energii turbíně. Varné reaktory tedy nemají okruh páry jako tlakovodní reaktory a nemají tedy parogenerátor.

V závislosti na designu se teplota vody v primárním okruhu u varných SMR pohybuje okolo 290 °C a tlak vody se pohybuje okolo 7 MPa.[9]

Vysokoteplotní plynem chlazené SMR editovat

Vysokoteplotní plynem chlazené (HTGR) SMR jsou reaktory, které využívají štěpení pomocí tepelných neutronů. Pro snížení energie neutronů se používá grafitový moderátor. Chladivem těchto reaktorů je helium.[11]

Maximální teplota chladiva se pohybuje v rozmezí 750–950 °C, a proto jsou tyto reaktory vhodné pro vysokoteplotní aplikace jako je například vysokoteplotní elektrolýza, která vyžaduje teploty v rozmezí 700–1000 °C.[12] Palivo je u těchto SMR obohacené izotopem uranu 235U až do 20 %[pozn. 3] a u některých SMR designů dosahuje úrovně vyhoření až 165 GWd/t.[9]

Kovy používané jako chladivo
Chladivo Teplota tání Teplota varu
Sodík 97.72 °C 883 °C
NaK −11 °C 785 °C
Rtuť −38.83 °C 356.73 °C
Olovo 327.46 °C 1749 °C
Eutektická slitina Pb-Bi 123.5 °C 1670 °C
Cín 231.9 °C 2602 °C

Rychlé reaktory chlazené tekutými kovy editovat

Rychlé reaktory chlazené tekutými kovy (LMFR) jsou reaktory využívající fyzikálních a chemických vlastností tekutých kovů, které zde slouží jako chladivo primárního okruhu. Díky své tepelné vodivosti, která je 10-100 krát větší než u vody, tyto reaktory dosahují lepšího odvodu tepla a důsledkem je zvýšení výkonové hustoty.[13] LMFR pracují na rychlých neutronech, takže nemají moderátor.[14]

SMR designy používají jako chladivo převážně olovo, sodík a euktetickou slitinu olova a bismutu (Pb 44,5 hm. %, Bi 55,5 hm. %[15]). Minimální teploty se proto u těchto SMR designů pohybují v rozsahu 340–420 °C v závislosti na použitém chladivu.

Reaktory založené na roztavených solích editovat

Reaktory založené na roztavených solích (MSR) jsou reaktory pracující s energií neutronů v rozsahu tepelných, rezonančních a rychlých neutronů. Štěpitelný materiál je buďto oddělený od tekutých solí v primárním okruhu (pevné palivo), nebo smíchán přímo s tekutými solemi (tekuté palivo) například na fluorid uraničitý (UF4), fluorid plutonitý (PuF3) nebo paliva na bázi chloridových solí. Moderátorem může být grafit, těžká voda, soli a v případě rychlých reaktorů se moderátor neuplatňuje.[16]

MSR reaktory pracují s tlakem v primárním okruhu v rozsahu atmosférického tlaku až do 1 MPa. Většina designů je navržena na práci při atmosférickém tlaku a to je jednou z hlavních výhod MSR.[9]

Seznam SMR projektů editovat

     vývoj      ve výstavbě      v provozu      licencování

Název Výkon Typ Výrobce Stav
CNP-300 300 MWe PWR SNERDI/CNNC, Pákistán & Čína v provozu
ACP100/Linglong One 125 MWe iPWR CNNC, Čína ve výstavbe
ACPR100 140 MWe iPWR CGN, Čína vývoj
ACPR50S 60 MWe PWR CGN, Čína vývoj
AHWR-300 LEU 300 MWe PHWR BARC, Indie vývoj
ARC-100 100 MWe LMFR (Na) ARC with GE Hitachi, USA vývoj
BANDI-60S 60 MWe PWR Kepco, South Korea vývoj
BREST-OD-300 300 MWe LMFR (Pb) RDIPE, Rusko ve výstavbe
BWRX-300 300 MWe BWR GE Hitachi, USA licencování
CAP200 LandStar-V 220 MWe PWR SNERDI/SPIC, Čína vývoj
CR-100[17] 100 MWt PWR ÚJV ŘEŽ, Česko vývoj
DAVID[18] 50 MWe PWR Czechatom Design Bureau, Česko vývoj
EM2 240 MWe HTR, FNR General Atomics (USA) vývoj
FMR 50 MWe HTR, FNR General Atomics + Framatome vývoj
HTR-PM 210 MWe HTR INET, CNEC & Huaneng, Čína v provozu
IMR 350 MWe iPWR Mitsubishi Heavy Ind, Japan* vývoj
Integrální MSR 192 MWe MSR Terrestrial Energy, Kanada vývoj
KLT-40S 35 MWe PWR OKBM, Rusko v provozu
Moltex SSR-U 150 MWe MSR/FNR Moltex, UK vývoj
Moltex SSR-W 300 MWe MSR Moltex, UK vývoj
mPower 195 MWe iPWR BWXT, USA* licencování
Natrium 345 MWe LMFR (Na) TerraPower + GE Hitachi, USA vývoj
NuScale Power Module 77 MWe iPWR NuScale Power + Fluor, USA licencování
NUWARD 170 MWe PWR EDF, CEA, Naval Group, Framatome, TA, TE licencování
PB-FHR 100 MWe MSR UC Berkeley, USA vývoj
PBMR 165 MWe HTR PBMR, Jižní Afrika* vývoj
PHWR-220 220 MWe PHWR NPCIL, Indie v provozu
PRISM 311 MWe LMFR (Na) GE Hitachi, USA vývoj
RITM-200 50 MWe iPWR OKBM, Rusko v provozu
RITM-200M 50 MWe iPWR OKBM, Rusko vývoj
RITM-200N 55 MWe iPWR OKBM, Rusko vývoj
Seaborg CMSR 100 MWe MSR Seaborg, Dánsko vývoj
SMART 100 MWe iPWR KAERI, South Korea licencování
SMR-160 160 MWe PWR Holtec, USA + SNC-Lavalin, Kanada licencování
SNP350 350 MWe PWR SNERDI, Čína vývoj
SVBR-100 100 MWe LMFR (Pb-Bi) AKME-Engineering, Rusko* vývoj
Teplator[19] 150 MWt PHWR ZČU v Plzni & CIIRC ČVUT v Praze, Česko vývoj
Thorcon TMSR 250 MWe MSR Martingale, USA vývoj
TMSR-SF 100 MWt MSR SINAP, Čína vývoj
UK SMR 470 MWe PWR Rolls-Royce SMR, UK licencování
VBER-300 300 MWe PWR OKBM, Rusko vývoj
VK-300 300 MWe BWR NIKIET, Rusko vývoj
Westinghouse LFR 300 MWe LMFR (Pb) Westinghouse, USA vývoj
Westinghouse SMR 225 MWe iPWR Westinghouse, USA* vývoj
Xe-100 80 MWe HTR X-energy, USA vývoj
Tabulka byla vytvořena 10. 7. 2023 na základě článku https://world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-power-reactors/small-nuclear-power-reactors.aspx

Ekonomika editovat

Hlavním důvodem zájmu o SMR jsou deklarované úspory z rozsahu výroby díky velkoobjemové výrobě v továrně mimo areál elektrárny. Některé studie naopak uvádějí, že kapitálové náklady na SMR jsou stejné jako u větších reaktorů.[20] K výstavbě továrny je zapotřebí značný kapitál – zmírnění těchto nákladů vyžaduje značný objem, který se odhaduje na 40–70 jednotek.[21][22]

Podle studie výroby elektřiny v decentralizovaných mikrosítích z roku 2014 by celkové náklady na využití SMR pro výrobu elektřiny byly výrazně nižší ve srovnání s celkovými náklady na větrné elektrárny na moři, solární tepelné elektrárny, elektrárny na biomasu a solární fotovoltaické elektrárny.[23]

V roce 2016 se uvádělo, že náklady na výstavbu jednoho reaktoru SMR jsou nižší než u konvenční jaderné elektrárny, zatímco náklady na provoz mohou být u SMR vyšší kvůli nízké ekonomice rozsahu a vyššímu počtu reaktorů. Provozní náklady personálu SMR na jednotku výkonu mohou být až o 190 % vyšší než fixní provozní náklady menšího počtu velkých reaktorů.[24] Modulární stavba je velmi složitý proces a podle zprávy z roku 2019 jsou „informace o přepravě modulů SMR velmi omezené“.[25]

Výpočet výrobních nákladů provedený německým Spolkovým úřadem pro bezpečnost nakládání s jaderným odpadem (BASE), který zohledňuje úspory z rozsahu a efekty učení z jaderného průmyslu, naznačuje, že by muselo být vyrobeno v průměru 3 000 SMR, než by se výroba SMR vyplatila. Je to proto, že náklady na výstavbu SMR jsou vzhledem k nízkému elektrickému výkonu relativně vyšší než náklady na výstavbu velkých jaderných elektráren.[26]

V roce 2017 se studie Energy Innovation Reform Project osmi společností zabývala návrhy reaktorů s výkonem od 47,5 MWe do 1 648 MWe. Studie uvádí průměrné investiční náklady 3 782 USD/kW, průměrné provozní náklady celkem 21 USD/MWh a vyrovnané náklady na elektřinu 60 USD/MWh.[27]

V roce 2020 zakladatel Energy Impact Center Bret Kugelmass prohlásil, že tisíce SMR by mohly být postaveny paralelně, „čímž by se snížily náklady spojené s dlouhými výpůjčními lhůtami pro prodloužené harmonogramy výstavby a snížily rizikové prémie, které jsou v současnosti spojeny s velkými projekty“.[28] Výkonný viceprezident GE Hitachi Nuclear Energy Jon Ball souhlasil s tím, že modulární prvky SMR by také pomohly snížit náklady spojené s prodlouženými lhůtami výstavby.[29]

Odhadovaná cílová cena výroby elektřiny je 89 USD/MWh v roce 2023, zvýšená z 58 USD/MWh v roce 2021, pro první plánované komerční nasazení SMR v USA v Idaho National Laboratory šesti reaktorů NuScale 77 MWe. Projekt má podporu vlády USA ve výši 1,355 miliardy dolarů plus odhadovanou dotaci na výrobu 30 USD/MWh ze zákona o snížení inflace v roce 2020.[29][30][31]

Akademická práce,[32] publikovaná v říjnu 2023, porovnává 19 hlavních světových projektů malých modulárních reaktorů. Autoři využili veřejně dostupná data o těchto projektech pro modelování dvěma používanými modely pro odhad skutečných výrobních nákladů.[33] Závěry studie jsou následující:

  • Odhady nákladů výrobců jsou většinou příliš optimistické ve srovnání s teorií výroby.
  • Simulace Monte Carlo ukazuje, že žádný koncept není ziskový ani konkurenceschopný.
  • Medián NPV je záporný a pohybuje se od 3 (HTR) do 293 (SFR) milionů USD/MWe.
  • Medián LCOE začíná na 116 USD/MWh pro HTR a na 218 USD/MWh pro PWR.[32]

Odkazy editovat

Poznámky editovat

  1. V České republice známé též pod názvem MMR. V anglické verzi zkratky SMR představuje Small Modular Reactor.
  2. V případě tlakovodních SMR, které jsou určeny pouze k produkci tepelné energie, se teplota v primárním okruhu může pohybovat i pod hranicí 200 °C. Například projekt ZČU nazvaný Teplátor dosahuje teplot vody 150 °C.
  3. Obohacení nad 5 % se používá pouze v zemích, které nejsou omezené výše zmíněnými normami

Reference editovat

V tomto článku byl použit překlad textu z článku Small modular reactor na anglické Wikipedii.

  1. Small Modular Reactor (SMR) Regulators' Forum. www.iaea.org [online]. 2018-01-18 [cit. 2023-07-10]. Dostupné online. (anglicky) 
  2. asmedigitalcollection.asme.org [online]. [cit. 2023-07-10]. Dostupné online. DOI 10.1115/icone26-81604. 
  3. International Atomic Energy Agency. Passive Safety Systems and Natural Circulation in Water Cooled Nuclear Power Plants. [s.l.]: [s.n.] Dostupné online. S. 1–160. (anglicky) 
  4. FG Forrest, a s. Základní typy jaderných reaktorů. Skupina ČEZ [online]. [cit. 2023-07-10]. Dostupné online. 
  5. Akademik Lomonosov. [s.l.]: [s.n.] Dostupné online. (anglicky) Page Version ID: 1152205648. 
  6. Shidao Bay Nuclear Power Plant. [s.l.]: [s.n.] Dostupné online. (anglicky) Page Version ID: 1143502026. 
  7. FG Forrest, a s. Základní typy jaderných reaktorů. Skupina ČEZ [online]. [cit. 2023-07-11]. Dostupné online. 
  8. International Atomic Energy Agency. Light Water Reactor Fuel Enrichment beyond the Five Per Cent Limit: Perspectives and Challenges. [s.l.]: [s.n.] Dostupné online. S. 1–56. (anglicky) 
  9. a b c d Advances in Small Modular Reactor Technology Developments (2022) [online]. IAEA [cit. 2023-07-11]. Dostupné online. 
  10. ZELIANG, Chireuding; MI, Yi; TOKUHIRO, Akira. Integral PWR-Type Small Modular Reactor Developmental Status, Design Characteristics and Passive Features: A Review. Energies. 2020-06-05, roč. 13, čís. 11, s. 2898. Dostupné online [cit. 2023-07-11]. ISSN 1996-1073. DOI 10.3390/en13112898. (anglicky) 
  11. Gas cooled reactors. www.iaea.org [online]. 2016-04-13 [cit. 2023-07-13]. Dostupné online. (anglicky) 
  12. ACAR, Canan; DINCER, Ibrahim. 3.1 Hydrogen Production. Příprava vydání Ibrahim Dincer. Oxford: Elsevier Dostupné online. ISBN 978-0-12-814925-6. DOI 10.1016/b978-0-12-809597-3.00304-7. S. 1–40. (anglicky) DOI: 10.1016/B978-0-12-809597-3.00304-7. 
  13. International Atomic Energy Agency. Liquid Metal Coolants for Fast Reactors Cooled by Sodium, Lead and Lead-Bismuth Eutectic. [s.l.]: [s.n.] Dostupné online. S. 1–82. (anglicky) 
  14. REVANKAR, Shripad T. Chapter Four - Nuclear Hydrogen Production. Příprava vydání Hitesh Bindra, Shripad Revankar. [s.l.]: Academic Press Dostupné online. ISBN 978-0-12-813975-2. DOI 10.1016/b978-0-12-813975-2.00004-1. S. 49–117. (anglicky) DOI: 10.1016/B978-0-12-813975-2.00004-1. 
  15. Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies – 2015 Edition. Nuclear Energy Agency (NEA) [online]. [cit. 2023-07-17]. Dostupné online. (anglicky) 
  16. SERP, Jérôme; ALLIBERT, Michel; BENEŠ, Ondřej. The molten salt reactor (MSR) in generation IV: Overview and perspectives. Progress in Nuclear Energy. 2014-11-01, roč. 77, s. 308–319. Dostupné online [cit. 2023-07-17]. ISSN 0149-1970. DOI 10.1016/j.pnucene.2014.02.014. (anglicky) 
  17. CR-100 – Small Modular Reactor | Malý modulární reaktor [online]. [cit. 2023-07-17]. Dostupné online. (anglicky) 
  18. DAVID SMR | Witkowitz Atomica. www.witkowitz-atomica.cz [online]. [cit. 2023-07-17]. Dostupné online. 
  19. TEPLATOR | Jaderné řešení pro levné a bezpečné centrální vytápění. Teplator.cz [online]. [cit. 2023-07-17]. Dostupné online. 
  20. MD Carelli, B Petrovic, CW Mycoff et al. Economic comparison of different size nuclear reactors. legacy-assets.eenews.net [online]. 2007 [cit. 2023-10-29]. Dostupné online. 
  21. The nuclear industry: a small revolution. BBC News. 2016-03-23. Dostupné online [cit. 2023-10-29]. (anglicky) 
  22. MIGNACCA, Benito; LOCATELLI, Giorgio; SAINATI, Tristano. Deeds not words: Barriers and remedies for Small Modular nuclear Reactors. Energy. 2020-09-01, roč. 206, s. 118137. Dostupné online [cit. 2023-10-29]. ISSN 0360-5442. DOI 10.1016/j.energy.2020.118137. 
  23. ISLAM, Md. Razibul; GABBAR, Hossam A. Study of small modular reactors in modern microgrids: SMALL MODULAR REACTORS IN MODERN MICROGRIDS. International Transactions on Electrical Energy Systems. 2015-09, roč. 25, čís. 9, s. 1943–1951. Dostupné online [cit. 2023-10-29]. DOI 10.1002/etep.1945. (anglicky) 
  24. Small modular reactors Can building nuclear power become more cost-effective? [online]. 2016-03 [cit. 2023-10-29]. Dostupné online. 
  25. MIGNACCA, Benito; ALAWNEH, Ahmad Hasan; LOCATELLI, Dr Giorgio. Transportation of Small Modular Reactor Modules: What Do the Experts Say?. The Proceedings of the International Conference on Nuclear Engineering (ICONE). 2019, roč. 2019.27, s. 1235. Dostupné online [cit. 2023-10-29]. DOI 10.1299/jsmeicone.2019.27.1235. 
  26. Small Modular Reactors - Was ist von den neuen Reaktorkonzepten zu erwarten?. BASE [online]. [cit. 2023-10-29]. Dostupné online. (německy) 
  27. EIRP. What Will Advanced Nuclear Power Plants Cost? [online]. 2017-07-01 [cit. 2023-10-29]. Dostupné v archivu pořízeném dne 2022-04-16. (anglicky) 
  28. Industry heads warn nuclear costs must be slashed | Reuters Events | Nuclear. www.reutersevents.com [online]. [cit. 2023-10-29]. Dostupné online. 
  29. a b UAMPS downsizes NuScale SMR plans. www.ans.org [online]. [cit. 2023-10-29]. Dostupné online. (anglicky) 
  30. Further cost refinements announced for first US SMR plant : New Nuclear - World Nuclear News. www.world-nuclear-news.org [online]. [cit. 2023-10-29]. Dostupné online. 
  31. Eye-popping new cost estimates released for NuScale small modular reactor. ieefa.org [online]. [cit. 2023-10-29]. Dostupné online. (anglicky) 
  32. a b STEIGERWALD, Björn; WEIBEZAHN, Jens; SLOWIK, Martin. Uncertainties in estimating production costs of future nuclear technologies: A model-based analysis of small modular reactors. Energy. 2023-10-15, roč. 281, s. 128204. Dostupné online [cit. 2023-10-29]. ISSN 0360-5442. DOI 10.1016/j.energy.2023.128204. 
  33. BLAŽEK, Petr. Studená sprcha pro malé modulární reaktory: ekonomicky nevycházejí. iDNES.cz [online]. 2023-10-29 [cit. 2023-10-29]. Dostupné online. 

Související články editovat

Externí odkazy editovat