Einsteinova konvence

matematický zápis
(přesměrováno z Einsteinova notace)

Einsteinova notace nebo Einsteinova sumační konvence je zjednodušený zápis součtu spočívající v tom, že za určitých okolností je možné vynechat znak sumy a psát jenom sčítané členy. Používá se především v tenzorovém počtu a aplikacích lineární algebry ve fyzice, zejména tam, kde ve vzorcích vystupují souřadnice.

Podle této konvence, jestliže se indexová proměnná v jednom členu objevuje v horní i dolní pozici, znamená to součet přes všechny možné hodnoty indexu. V typických aplikacích se jedná o hodnoty 1, 2, 3 (pro výpočty v Euklidovském prostoru), nebo 0, 1, 2, 3 nebo 1, 2, 3, 4 (pro výpočty v Minkowského prostoru), ale může se jednat o jakýkoliv rozsah, dokonce v některých aplikacích se může jednat o nekonečnou množinu.

V obecné relativitě se řecká abeceda a latinka používají k rozlišení, zda se sčítá přes 1, 2, 3 nebo 0, 1, 2, 3 (obvykle se latinka i, j, … používá pro 1, 2, 3 a řecká abeceda μ, ν, … pro 0, 1, 2, 3). V praxi tomu ale může být i obráceně.

Někdy (jako v obecné relativitě) se požaduje, aby se index jednou vyskytoval jako horní index a jednou jako dolní, v jiných aplikacích se používají jen dolní indexy, např. v tenzorovém počtu nebo v duálním vektorovém prostoru.

V mechanice a inženýrství se často vektor v 3D prostoru popisuje pomocí ortogonálních jednotkových vektorů i, j a k.

 

Jestliže bázové vektory i, j, a k vyjádříme (přejmenujeme) jako e1, e2, a e3, lze vektor vyjádřit pomocí sumace:

 

V Einsteinově notaci, pokud se nějaký index v rovnici opakuje dvakrát, implikuje to sumaci, a sumační symbol je možné vynechat.

Tato notace umožňuje zestručnit algebraickou reprezentaci vektorových a tenzorových rovnic. Například

 

nebo ekvivalentně:

 

kde

 

a   je Kroneckerovo delta, které je rovno 1 když i = j, a 0 jindy. Logicky vyplývá, že jedno j v rovnici může být převedeno na i, nebo jedno i může být převedeno na j. Pak

 

Pro vektorový součin,

 

kde   a   Levi-Civitův symbol definovaný takto:

 

což nahrazuje

 

z

 .

Pokud označíme  , pak můžeme psát   a též pro jednotlivé složky  . V posledním zápisu se index i objevuje pouze jednou na obou stranách rovnice, a proto se v tomto případě nejedná o součet, ale spíše o systém rovnic:

 

Alternativně lze vektorový součin vyjádřit jako

 

kde   je tenzorový zápis Levi-Civitova symbolu. Tota notace ale nepochází od Einsteina.

Abstraktní definice

editovat

Uvažujme vektorový prostor V  s konečnou dimenzí n a určitou bázi V. Bázové vektory můžeme psát jako e1, e2, …, en. Pak jestliže v je vektor v prostoru V, má vzhledem k bázi souřadnice v1, …, vn.

Základní pravidlo:

v = vi ei.

V tomto příkladu se předpokládalo, že výraz na pravé straně byl sečten přes i  s hodnotami 1 až n, protože index i se neobjevuje na obou stranách výrazu. (Nebo, použijeme-li Einsteinovu konvenci, protože se index i  objevil dvakrát.)

Index i se také označuje jako nepravý index protože výsledek na něm nezávisí; tudíž můžeme také například psát :

v = vj ej.

Index, přes který se nesčítá, je volný index a může se vyskytnout v každém členu rovnice nebo výrazu.

Tam, kde se index musí objevit jednou jako dolní index a jednou jako horní index, si základní vektor ei ponechá dolní index, ale souřadnice budou vi s horním indexem. Pak základní pravidlo je:

v = vi ei.

Hodnota Einsteinovy konvence je také v tom, že se aplikuje k dalším vektorovým prostorům vystavěných z V  použitím tenzorového součinu a duality. Například  , tenzorový součin V  se sebou samým, má bázi skládající se z tenzorů tvaru  . Libovolný tenzor T v   lze psát jako:

 .

V*, duální prostor k V, má bázi e1, e2, …, en která splňuje pravidlo

 .

Zde δ je Kroneckerovo delta, tak   je 1 jestliže i =j  a 0 v ostatních případech.

Příklady

editovat

Einsteinova sumace se stane jasnější s pomocí několika jednoduchých příkladů. Uvažujme čtyřrozměrný časoprostor, s indexy od 0 do 3 :

 
 

Výše uvedený příklad je jedno ze zúžení, obecné tenzorové operace. Tenzor   přejde do nového tenzoru sumací přes první horní a dolní index. Typicky je výsledný tenzor přejmenován pomocí odstranění zužovacích indexů :

 

Podobný příklad - uvažujme skalární součin dvou vektorů a a b. Skalární součin je definován jednoduše jako suma přes indexy a a b: