Barvení grafu

Obarvený graf – 3 barvy
Vrcholy Petersenova grafu jsou obarvitelné třemi barvami

Barvení grafu je jednou z disciplín teorie grafů, která se zabývá přiřazováním barev (téměř vždy reprezentovaných přirozenými čísly) různým objektům v grafu – vrcholům, hranám, stěnám atd. Nejčastěji jde o barvení vrcholů, ostatní případy (jako např. barvení sousedících ploch) lze na tento jednoduše převést.

DefiniceEditovat

Nechť G = (V, E) je graf, k přirozené číslo. Zobrazení   nazveme obarvením grafu G pomocí k barev, pokud pro každou hranu   platí  . Barevnost grafu (také chromatické číslo) G je minimální počet barev potřebný pro obarvení G. Značí se  .

Některé vlastnosti Editovat

  1.   = 1 právě tehdy, skládá-li se G z izolovaných vrcholů (diskrétní graf)
  2.   = |V| pro libovolný úplný graf
  3.   právě tehdy, obsahuje-li G kružnici liché délky (ekvivalentně, není-li G bipartitní)
  4.   pro libovolný rovinný graf (viz slavný problém čtyř barev)
  5.   (maximální stupeň vrcholu v grafu + 1)