Pologrupa
algebraická struktura s jednou asociativní binární operací
V algebře je pologrupa algebraická struktura s jednou asociativní binární operací. Je to tedy grupoid, jehož operace je asociativní.
Definice
editovatPologrupa je grupoid (M; ·), tedy množina M s binární operací „·“ : M × M → M, a následujícím axiomem:
- Asociativita: ∀ x, y, z ∈ M: (x·y)·z = x·(y·z)
Někdy se uvádí i následující axiom plynoucí však z definice binární operace.
- ∀ (x, y ∈ M) x·y ∈ M
Pologrupa s neutrálním prvkem je monoid.
Každá grupa, abelovská grupa a monoid je zároveň pologrupou.
Příklady
editovat- Každá podmnožina pologrupy uzavřená na danou operaci
- Přirozená čísla tvoří pologrupu jak k operaci sčítání, tak i násobení.