Nerovnosti mezi průměry

Nerovnosti mezi průměry v matematice vyjadřují nejčastěji vztah mezi kvadratickým, aritmetickým, geometrickým a harmonickým průměrem.

Existuje nekonečně mnoho průměrů, ze známějších např. zobecněný mocninný (např. odmocninový, kubický), Heronův, aritmeticko-geometrický, logaritmický, harmonicko-kvadratický, kontraharmonický – které lze do nerovností zapsat. Jejich běžné užití je však (kromě Heronova průměru) spíše sporadické.

Označíme-li kvadratický průměr daných kladných čísel jako  , aritmetický průměr  , geometrický průměr   a harmonický průměr  , pak platí:

 

Rovnost navíc nastává právě tehdy, když jsou všechna průměrovaná čísla stejná.

Například pro čísla 1 a 9 je

 

Nejdůležitější z těchto nerovností je nerovnost aritmetického a geometrického průměru, nazývaná též AG nerovnost.

Související články

editovat

Externí odkazy

editovat