Stochastická matice

Stochastická matice je čtvercová nezáporná matice jejíž řádkové součty jsou rovny jedné, tedy

pro kterou platí

(Nezaměňovat se zcela nesouvisejícím pojmem náhodná matice.)

TerminologieEditovat

Stochastickou matici někdy nazýváme též pravou stochastickou maticí přičemž transpozici takové matice, tedy čtvercovou nezápornou matici se sloupcovými součty rovnými jedné, pak nazýváme levou stochastickou maticí.

Matici, která je zároveň pravou i levou stochastickou maticí, nazýváme dvojitě stochastická matice.

Souvislost s Markovovými řetězciEditovat

Stochastické matice jsou přirozené maticové reprezentanty Markovových řetězců, neboť  -tý řádek (v případě pravé stochastické matice) můžeme ztotožnit s  -tým stavem nějakého systém a prvky v tomto řádku s pravděpodobnostmi přechodu do jiných stavů. Tedy   je pravděpodobnost, že systém přejde ze stavu   do stavu  .

Typickým představitelem takového řetězce a jednou z nejznámějších aplikací stochastických matic je tzv. PageRank algoritmus ohodnocující např. relevanci webových stránek pro vyhledávač Google.

Základní spektrální vlastnostiEditovat

Stochastická matice má vlastní číslo   spektrální poloměr  , jednotkové vlastní číslo je tedy největším vlastním číslem. Odpovídá mu pravý vlastní vektor

 

Zřejmě totiž platí  .

V analýze chování Markovových řetězců je pak klíčový levý vlastní vektor   odpovídající vlastnímu číslu  , tj. vektor splňující  . Ten je vždy možné zvolit kladný, za jistých dodatečných předpokladů na matici   (ireducibilita, imprimitivita) je přitom dán (až na násobek číslem) jednoznačně.

Např. v PageRank algoritmu jsou složky tohoto již jednoznačně daného vhodně normovaného levého vlastního vektoru   právě rovny PageRankům jednotlivých stránek.

OdkazyEditovat

Související článkyEditovat