Wikipedista:AnnaKratochvílová/Pískoviště

Šablona:Infobox gene Toll-like receptor 6 is a protein that in humans is encoded by the TLR6 gene.[1] TLR6 is a transmembrane protein, member of toll-like receptor family, which belongs to the pattern recognition receptor (PRR) family. TLR6 acts in a heterodimer form with Toll-like receptor 2 (TLR2). It’s ligands include multiple diacyl lipopeptides derived from Gram-positive bacteria and Mycoplasma and several fungal sugars. After dimerizing with TLR2, the NF-κB intracellular signalling pathway is activated, leading to an pro-inflammatory cytokine production and activation of innate immune response. TLR6 has also been designated as CD286 (cluster of differentiation 286).

Function editovat

The protein encoded by this gene is a member of the toll-like receptor (TLR) family, which plays a fundamental role in pathogen recognition and activation of innate immunity. TLRs are highly conserved from Drosophila to humans and share structural and functional similarities. They recognize pathogen-associated molecular patterns (PAMPs) that are expressed on infectious agens, and mediate the production of cytokines necessary for the development of effective immunity. The various TLRs exhibit different patterns of expression.[2] This receptor functionally interacts with toll-like receptor 2 (TLR2) to mediate cellular response to gram-positive bacteria, mycoplasma, fungi, some viruses and even protozoa.[3]

Interactions editovat

TLR6 has been shown to functionally interact in a heterodimer form with TLR2. [2] Synergistic interactions of TLR2/6 and TLR9 leading to higher resistance against lung infection have also been reported.[4]

Agonists editovat

Unlike TLR2/1 heterodimer, which recognizes triacylated lipopeptides, the TLR2/6 heterodimer is known to be specific for diacylated lipopeptides such as lipoteichoic acid, found on the cell wall of Gram-positive bacteria or macrophage-activating lipopeptide (MALP-2), found on the cell membrane of Mycoplasma. It is also known that TLR2/6 binds some viral products, among them hepatitis C core and NS3 protein from the Hepatitis C virus and Glycoprotein B from Cytomegalovirus. Several fungal ligands such as Glucuronoxylomannan, Phospholipomannan and Zymosan have been reported. Moreover, TLR2/6 is known to bind one protozoan ligand – Lipopeptidophosphoglycan.[3] TLR2/6 can also be activated by synthetic lipopeptides, such as Pam2CSK4 or Fibroblast–stimulating lipopeptide (FSL-1).[5]

Signaling editovat

After the ligand is recognized, TLR2 and TLR6 receptors dimerize. Ligand-mediated dimerization is crucial for recruiting the adaptor proteins, which are necessary for transmitting the signal further in the cell. TLR2/6 heterodimer, just as most of the Toll-like receptors, generally induces MyD88-dependent intracellular signalling pathway, which leads to nuclear translocation of nuclear factor-κB (NF-κB), resulting in the production of pro-inflammatory cytokines. But MyD88 also activates mitogen‐activated protein kinases (MAPKs).[3][6] However, several strains of lactic acid bacteria have been reported to stimulate immune regulation via TLR2/6, leading to tolerogenic interleukin 10 secretion, instead of pro-inflammatory cytokine secretion.[7]

Expression editovat

In human, TLR6 is highly expressed in appendix, spleen and lymph node.[2] Among the immune cells, TLR6 has been detected in conventional dendritic cells, monocytes, macrophages, microglia, neutrophils, NK cells and B lymphocytes.[8][9]

Clinical significance editovat

A 359T>C single nucleotide polymorphism in the leucine rich repeat domain is asociated with susceptibility to Legionnaires’ Disease.[10] Increased occurrence of asthma in some populations may be associated with Ser249Pro polymorphism, also in the extracellular domain of the encoded protein.[2]

References editovat

  1. Takeuchi O, Kawai T, Sanjo H, Copeland NG, Gilbert DJ, Jenkins NA, Takeda K, Akira S. TLR6: A novel member of an expanding toll-like receptor family. Gene. April 1999, s. 59–65. DOI 10.1016/S0378-1119(99)00098-0. PMID 10231569. 
  2. a b c d Entrez Gene: TLR6 toll-like receptor 6 [online]. Dostupné online. 
  3. a b c Oliveira-Nascimento L, Massari P, Wetzler LM. The Role of TLR2 in Infection and Immunity. Frontiers in Immunology. 2012, s. 79. DOI 10.3389/fimmu.2012.00079. PMID 22566960. 
  4. Duggan JM, You D, Cleaver JO, Larson DT, Garza RJ, Guzmán Pruneda FA, Tuvim MJ, Zhang J, Dickey BF, Evans SE. Synergistic interactions of TLR2/6 and TLR9 induce a high level of resistance to lung infection in mice. Journal of Immunology. May 2011, s. 5916–26. DOI 10.4049/jimmunol.1002122. PMID 21482737. 
  5. KANG, Jin Young; NAN, Xuehua; JIN, Mi Sun. Recognition of Lipopeptide Patterns by Toll-like Receptor 2-Toll-like Receptor 6 Heterodimer. Immunity. 2009-12, roč. 31, čís. 6, s. 873–884. Dostupné online [cit. 2020-01-13]. DOI 10.1016/j.immuni.2009.09.018. (anglicky) 
  6. MUKHERJEE, Suprabhat; HUDA, Sahel; BABU, Santi P. Sinha. Toll-like receptor polymorphism in host immune response to infectious diseases: A review. Scandinavian Journal of Immunology. 2019, roč. 90, čís. 1, s. e12771. Dostupné online [cit. 2020-01-16]. ISSN 1365-3083. DOI 10.1111/sji.12771. (anglicky) 
  7. Ren C, Zhang Q, de Haan BJ, Zhang H, Faas MM, de Vos P. Identification of TLR2/TLR6 signalling lactic acid bacteria for supporting immune regulation. Scientific Reports. October 2016, s. 34561. DOI 10.1038/srep34561. PMID 27708357. 
  8. Yeh DW, Huang LR, Chen YW, Huang CF, Chuang TH. Interplay between Inflammation and Stemness in Cancer Cells: The Role of Toll-Like Receptor Signaling. Journal of Immunology Research. 2016, s. 4368101. DOI 10.1155/2016/4368101. PMID 28116318. 
  9. OLSON, Julie K.; MILLER, Stephen D. Microglia Initiate Central Nervous System Innate and Adaptive Immune Responses through Multiple TLRs. The Journal of Immunology. 2004-09-15, roč. 173, čís. 6, s. 3916–3924. Dostupné online [cit. 2020-01-16]. ISSN 0022-1767. DOI 10.4049/jimmunol.173.6.3916. (anglicky) 
  10. MISCH, E A; VERBON, A; PRINS, J M. A TLR6 polymorphism is associated with increased risk of Legionnaires’ disease. Genes & Immunity. 2013-10, roč. 14, čís. 7, s. 420–426. Dostupné online [cit. 2020-01-13]. ISSN 1466-4879. DOI 10.1038/gene.2013.34. PMID 23823019. (anglicky) 

Further reading editovat

External links editovat

Šablona:Clusters of differentiation Šablona:TLR signaling pathway

Šablona:Gene-4-stub Šablona:Biochem-stub