Tokamak: Porovnání verzí

Smazaný obsah Přidaný obsah
JAnDbot (diskuse | příspěvky)
m řádková verze {{Wikislovník}} do odkazů
Pepan0 (diskuse | příspěvky)
m →‎Projekt ITER: odkaz na ITER
Řádek 24:
 
== Současný stav fúzního výzkumu ==
V 90. letech byla do plného provozu uvedena velká zařízení, tedy evropský tokamak JET a americký tokamak TFTR. Tyto tokamaky již dokázaly produkovat značné množství termojaderné energie. Např. JET produkoval fúzní výkon 16 MW po dobu 1 s. Jsou však stále příliš malé na to, aby vyráběly elektřinu ve velkém měřítku a navíc u obou těchto zařízení byla energie potřebná na vytvoření magnetického pole a ohřev plazmatu mnohem větší než vyprodukovaná fúzní energie. Nicméně i tak je z výsledků dosažených na těchto zařízeních zřejmé, že je z fyzikálního hlediska možné postavit fúzní elektrárnu právě na principu tokamaku. Otázkou zůstává, zda je lidstvo již na dostatečné technologické úrovni k tomu, aby tuto elektrárnu dokázalo spolehlivě provozovat. Jedná se o vývoj materiálů pro vnitřní stěnu vakuové komory, která se bude v průběhu výboje občas dostávat do kontaktu s horkým plazmatem a bude také silně ozářena fúzními neutrony. V reaktoru budou muset být cívky vytvářející magnetické pole supravodivé. Proto bude nutné vyvinout supravodivé systémy zatím nevídané velikosti. Demonstrátorem, který by měl skloubit všechny technologické a fyzikální požadavky na budoucí elektrárnu, bude právě budovaný tokamak [[ITER]]. Ten by měl být uveden do provozu v roce 2020. Pokud bude úspěšný, měla by být v roce 2040 až 2050 postavena první fúzní elektrárna.
 
== Projekt ITER ==
V polovině 80. let minulého století začínala myšlenka na stavbu budoucí elektrárny nabírat reálnější podobu. Zároveň se ale ukazovalo, že vývoj a stavba experimentálního zařízení, které by bylo schopné napodobit podmínky budoucího termojaderného reaktoru, nebude levnou záležitostí. To byl jeden z důvodů, proč roku 1985 navrhl Sovětský svaz nejdříve státům organizace EUROATOM a o několik týdnů později i USA vznik mezinárodního projektu, jehož výsledkem by bylo právě takové zařízení. Po dvou letech jednání, během kterých se k projektu připojilo ještě Japonsko, byly domluveny podmínky, za kterých se bude reaktor s názvem [[ITER]] (International thermonuclear experimental reactor) vyvíjet a stavět. Roku 1998 byl projekt reaktoru dokončen. ITER znamenal obrovský kvalitativní skok ve vývoji termojaderných reaktorů. U ITERu mělo být dosaženo hoření termojaderné reakce (tzn. průběh reakce bez nutnosti vnějšího ohřevu). Zatím nejúspěšnější termojaderné zařízení, JET, produkovalo 65% dodávané energie. Fúzní výkon měl být 1500 MW. Například jeden reaktor jaderné elektrárny Temelín má elektrický výkon 1000 MW při tepelném výkonu 3000 MW. Proud plazmatem měl být 22 MA a objem vakuové komory měl být 2000 m<sup>3</sup>. Těmto vynikajícím parametrům však také odpovídala konstrukční cena 6 miliard dolarů. Roku 1998 USA prakticky zastavily civilní termojaderný výzkum, Rusko se potýkalo s dlouhodobou hospodářskou krizí, jeden z nejbohatších států Evropy, Německo, muselo financovat své sjednocení. USA nakonec od projektu ITER odstoupili a zbývající účastníci nebyli ochotni vložit do tohoto projektu potřebné prostředky. Proto nechali projekt ITER zredukovat na poloviční cenu tak, aby vědecké výsledky nového ITERu měly co nejbližší hodnotu předpokládaným výsledkům původního ITERu. Tak byl roku 2001 dokončen redukovaný projekt. V tomto zařízení se nepředpokládá, ale ani nevylučuje samovolné hoření termojaderná reakce. Měl by však vyprodukovat desetkrát více energie než bude spotřebováno na ohřev plazmatu. Termojaderný výkon by měl činit 500 až 700 MW, proud plazmatem by měl být 15 MA a objem vakuové komory 837 m<sup>3</sup>. Podrobná tabulka porovnávající parametry původního ITERu, dnešního ITERu a dnes největšího tokamaku světa, JETu, je umístěna na konci této kapitoly. Došlo také k rozdělení nákladu mezi zúčastněné strany. EU, která ITER nakonec postaví, zaplatí 45,5% z celkových nákladů 10 mld USD, zbylí partneři, tj. Indie, Čína, Rusko, Jižní Korea, USA a Japonsko zaplatí každý po 9,1 % nákladů.
V roce 2006 se po dlouhých a komplikovaných jednáních rozhodlo, že ITER bude stát v jihofrancouzské oblasti Cadarache. Rozhodnutí o místě stavby padlo až poté, co EU, Rusko a Čína prohlásili, že pokud ostatní partneři nepřistoupí na stavbu ITERu ve Francii, začnou tam stavět sami. Japonci nakonec nátlaku podlehli, poněvadž zjistili, že by jen s pomocí USA a Jižní Koreje nebyli schopni stavbu ITERu a dalších potřebných zařízení financovat. Jako ústupek EU souhlasila, že generálním ředitelem projektu ITER bude Japonec Kaname Ikeda. Dále budou v Japonsku postaveny další zařízení, jejichž výsledků bude projekt ITER využívat. Například půjde o projekt IFMIF, který má testovat odolnost materiálů pro první stěnu fúzního reaktoru, o evropskou podporu přestavby japonského tokamaku JT-60U nebo o superpočítač pro zpracování dat z ITERu.
V současné době se ITER již staví a provoz by měl zahájit v roce 2020. V prvních letech by měl být používán jako náplň vodík nebo deuterium. V této fázi by mělo být vyladěno udržení horkého plazmatu, a měla by být k dokonalosti dovedena komora. V roce 2026 by podle plánu měla být zahájena fáze, kdy bude používáno jako palivo deuterium a tritium. Měly by zde být prakticky sledovány dopady velkého neutronového záření na různé materiály. Podmínky, které budou v ITERu, budou podobné podmínkám v budoucí termojaderné elektrárně.