Weierstrassova funkce

matematická funkce

Weierstrassova funkce, pojmenovaná po německém matematikovi Karlu Weierstrassovi, je matematická funkce, která je ve všech bodech spojitá, ale v žádném bodě nemá derivaci (není nikde hladká).

Weierstrassova funkce s konstantami ;
Ukázka soběpodobnosti

Funkce se chová jako fraktál, neboť zvětšené části grafu a původní graf jsou podobné.[1]

DefiniceEditovat

Weierstrassova funkce bývá uváděna v různých tvarech s různými konstantami.

 
kde  ,   je kladné liché číslo a konstanty splňují následující podmínku.
 
Později bylo dokázáno, že poslední uvedenou podmínku lze nahradit podmínkou  .
 
Riemannova funkce,  
 
přičemž údajně podle původní publikace  . Tato funkce má však v určitých izolovaných bodech konečné derivace. Podle jiných zdrojů[2] je tato funkce nazývána Riemannova, neboť podle Weierstrasse ji Bernhard Riemann uváděl na svých přednáškách okolo roku 1861.
  • Lze nalézt i jiné tvary nebo konkrétní konstanty.[1][3]

Související článkyEditovat

Externí odkazyEditovat

ReferenceEditovat