Otevřít hlavní menu
Větrné elektrárny v dánském Vendsysselu

Větrná energie je obnovitelná energie používaná k vytváření elektrické energie pomocí větrných elektráren (turbín) s využitím proudění větru jako obnovitelného zdroje energie.

Nejobvyklejším využitím jsou dnes větrné elektrárny, které využívají síly větru k roztočení vrtule. K ní je pak připojen elektrický generátor. Teoreticky získatelný výkon je přímo úměrný třetí mocnině rychlosti proudící vzdušné masy. Protože rychlost větru značně kolísá, nedosahují větrné elektrárny po většinu doby nominálních hodnot generovaného výkonu.

V historii se místo převodu na elektřinu přímo konala nějaká mechanická práce. Větrný mlýn například mlel obilí, větrnými stroji se čerpala voda, lisoval olej, stloukala plsť nebo poháněly katry. Vítr se také používá k pohonu dopravních prostředků, nejvíc u lodí (plachetnice).

Teorie větrné elektrárnyEditovat

Související informace naleznete také v článku Větrná energetika.

Teoreticky dosažitelný výkonEditovat

Proudící vzduch předává lopatkám větrné elektrárny část své kinetické energie. Albert Betz v roce 1919 odvodil teoreticky maximální dosažitelnou účinnost větrného stroje na 59,3 % (tzv. Betzovo pravidlo).[1] Kinetická energie větru se v turbíně mění na energii otáčivého pohybu a následně v generátoru na energii elektrickou. Teoreticky dosažitelný výkon činí v případě jednotkové plochy

 , kde kB je Betzův koeficient 0,59

Pro reálné turbíny s průměrem rotoru D (tedy délkou lopatky D/2) se používá vzorec

 , kde cp je součinitel výkonnosti, v ideálním případě rovný 0,59

ÚčinnostEditovat

 
Typický průběh generovaného výkonu a součinitele výkonnosti VE v závislosti na rychlosti větru

Součinitel výkonnosti je sám o sobě funkcí rychlosti větru a je dán konstrukčním řešením turbíny, konkrétně převodní křivkou úhlu natočení lopatek turbíny v závislosti na rychlosti větru. To, v kombinaci s kubickou závislostí na rychlosti větru způsobuje pronikavou závislost skutečného výkonu na rychlosti větru (při poloviční rychlosti je výkon osminový atd.).

Další podstatnou hodnotou, definující účinnost větrného zdroje je koeficient ročního využití  , definovaný jako poměr skutečně odvedeného výkonu k teoreticky možnému výkonu zdroje za rok. V českých podmínkách se   pohybuje v mezích 0,1–0,2, pro velmi větrné lokality dosahuje teoreticky až 0,28. Statisticky podle dat ČSÚ za rok 2007 však dosahuje koeficient ročního využití větrných elektráren v ČR pouze 12,71 % (za rok 2005 to bylo pouze 11 %)[2]. Hodnota ovšem značně závisí na zvolené lokalitě – větrná farma Sternwald na rakousko-českých hranicích ve východní části Šumavy dosáhla se 7 větrnými elektrárnami o instalovaném výkonu 14 MW koeficientu ročního využití za rok 2006 21,9 %, za první 4 měsíce roku 2007 se dokonce podařilo dosáhnout hodnoty průměrného využití 32,3 % (přičemž po zbytek téhož roku to bylo necelých 20 %).[3]

Další ztráty však vznikají i na jednotlivých částech soustrojí větrné elektrárny. Účinnost soustrojí se určí součinem účinnosti jednotlivých částí soustrojí elektrárny (rotoru, převodovky a generátoru):[4]

 

Rychlost větru v obecných podmínkáchEditovat

 
Rozložení hustot rychlostí větru pro střední hodnotu rychlosti 15 m/s

Spektrum rozložení hustoty rychlostí větru v dané lokalitě je poměrně dobře popsatelné Rayleighovým rozdělením (normální rozdělení v polárních souřadnicích) jako speciálním případem rozdělení Weibullova. Jde o funkci

 , kde v je náhodně proměnná rychlost větru,   je tvarový parametr rozložení a   odpovídá střední hodnotě rychlosti větru

 

Je zřejmé, že maximum hustoty výskytu rychlostí bude vždy ležet vlevo od hustoty výskytu střední rychlosti větru. Pro reálné použití má smysl pracovat s pravděpodobností výskytu rozsahu rychlostí větru v intervalu (v1,v2), kterou lze určit jako

 

Hlučnost větrných elektrárenEditovat

 
Typická křivka závislosti hlučnosti větrného zdroje na vzdálenosti, vyznačena hygienická hranice 40 dbA pro noční dobu

Větrné elektrárny jsou zdrojem nežádoucího hluku[5]. Jeho hlavními původci (zde a dále jsou uvažovány zdroje, pracující s vrtulí na nabíhající vzdušný proud) jsou aerodynamické hluky obtékání listů vrtule, gondoly a dříku stavby, turbulence, vznikající obtékáním náběžné hrany listu, víry v okolí konců vrtulových listů, turbulence nad odtokovou hranou listu a hluk laminárního proudění. Dále je hluk produkován mechanickými částmi konstrukce (servomotory a jejich převody, čerpadla, chladicí ventilátory měničů a mechanismů) a generátorem. Mimo slyšitelné pásmo v oblasti frekvencí 2–31,5 Hz (infrazvuk) je hluk větrných elektráren na úrovni přirozeného pozadí.

Šíření hluku větrného zdrojeEditovat

V praxi je jako model šíření používána náhrada prostředí hemisférou s homogenními vlastnostmi. V tomto modelu lze určit hlasitost hluku s danou intenzitou a v dané vzdálenosti dle vzorce

 

kde R je vzdálenost od zdroje hluku a α je součinitel absorpce, přijímaný pro suchý vzduch α=0.005 dBm−1, přičemž zdroj hluku je považován za bodový. Metodika měření je dána IEC 61400-11 ve druhém vydání. České hygienické normy připouštějí maximální úroveň hluku v obytné zástavbě 50 dBA ve dne a 40 dBA v noci, přípustná úroveň hluku ve volné přírodě není stanovena.

InfrazvukyEditovat

Zdrojem infrazvuků jsou zejména mechanické části konstrukce větrných turbín. Pro stanovení jejich intenzity nelze používat hlukoměry s filtrem křivky A (ekvivalent citlivosti ucha), který infrazvuky potlačuje. Hluk větrných elektráren, emitovaný v infrazvukové oblasti dosahuje až 70 dB (Vestas V-52 70 dB na frekvenci 16 Hz, Vestas V-80 72 dB ve frekvenčním rozsahu 4–26 Hz), což v tomto pásmu odpovídá přirozenému hlukovému pozadí. Infrazvukové vlnění se kromě vzdušné cesty šíří i konstrukcí dříku a základovou deskou do okolí.

Hluky, typické pro větrný zdrojEditovat

Zdroj hluku Frekvenční rozsah Typická intenzita Charakter hluku
Turbulence na koncích listu 500–1000 Hz 91,2 dBA širokopásmové hučení, modulované otáčkami listu (wish-wish)
Hluk na náběžné hraně 750–2000 Hz 99,2 dBA širokopásmové svištění
Hluk odtrhávání proudnic typický tón 84,8 dBA tón, měnící se dle rychlosti větru
Strojovna směs hluků 97,4 dBA směs hluků, měnících se s různou periodicitou (zapínání a vypínání servopohonů, čerpadel, ventilátorů)
Generátor tón 87,2 dBA tón, jehož výška se mění s otáčkami vrtule

Vliv na životní prostředíEditovat

Větrné elektrárny působí na dravé ptáky v ekosystému podobně jako jejich predátoři.[6]

Větrné elektrárny v ČeskuEditovat

Související informace naleznete také v článku Seznam větrných elektráren v Česku.
 
Pchery, okres Kladno. Demontáž jeřábu při dokončování dosud nejvýkonnější větrné elektrárny v Česku (únor 2008).
 
Větrné elektrárny u Ostružné, Jesenicko
 
7,5 MW turbíny větrné farmy v Belgii Estinnes dokončeno 10.10.2010

Celkový instalovaný výkon větrných elektráren v České republice k 31. 12. 2018 přesáhl 316 MW. V roce 2018 větrné elektrárny vyrobily 609 GWh brutto,[7] což je 0,8 % hrubé konečné spotřeby v ČR (dopočteno podle[7]). Odpovídá to také průměrnému výkonu 69,5 MW (koeficient ročního využití 21,99 % pro skutečně dodanou energii do sítě je to 21,68 %).

Ústav fyziky atmosféry Akademie věd České republiky odhadl v roce 2007 technický potenciál větrné energie v České republice na 29 GW a 71 TWh ročně[8] (tedy 96,1 % roční hrubé spotřeby ČR v roce 2018 – dopočteno podle[7]). Technický odhad uvažoval využití tehdy dostupných větrných turbín ve výšce kolem 100 m nad povrchem země, ale ignoroval většinu jiných praktických omezení – např. vlastnická práva a zastavěnost pozemků, ochranná pásma radarových a telekomunikačních zařízení a jiná omezení – jde tedy o teoretické maximum, kterého by šlo čistě technicky dosáhnout.

Podle odhadu realizovatelných větrných elektráren Ústavu fyziky atmosféry AVČR z roku 2007, který zapracoval i dodatečná praktická omezení stavby větrných elektráren, odhadl v ČR podle nejméně příznivého scénáře potenciál pro 472 větrných turbín o výkonu 991 MW s produkcí 2,4 TWh za rok, v případě středního scénáře 1179 turbín s celkovým výkonem 2516 MW a produkcí 5,6 TWh za rok a v případě pro větrnou energii nejpříznivějšího scénáře potenciál 2736 turbín o výkonu 5972 MW s produkcí 14,7 TWh ročně.[9] V roce 2012 Ústav zpřesnil svůj odhad středního scénáře na potenciál 759 turbín o celkovém výkonu 2277 MW s roční výrobou 5,9 TWh.[10]

Největší větrná elektrárna na světěEditovat

Zatím největší větrnou farmu na světě mají v Texasu (USA). Byla spuštěna 1. října 2009. Větrná farma Roscoe má výkon 781,5 MW a je tvořena 627 větrnými turbínami. Roscoe je schopna pokrýt spotřebu 230 000 domácností.[11]

Nejvyšší pokrytí výroby elektřiny pomocí větruEditovat

Španělská energetika zaznamenala ráno 30. prosince 2009 rekord, energie z větrných elektráren tam pokryla přes 54 % celkové poptávky po elektřině. To odpovídalo výkonu přes 10 000 megawattů.[12]

Nejvýkonnější větrné turbínyEditovat

V roce 2018 nejvýkonnější větrné turbíny měly výkon 8,8 MW.[zdroj?]

OdkazyEditovat

ReferenceEditovat

  1. JUNG, Ondřej; MALÝ, Luboš; MAREK, Michael; ŠMÍD, Martin. Větrná energie [online]. Tábor: Střední průmyslová škola strojní a stavební, Tábor, Komenského 1670, 2013 [cit. 2019-05-11]. Kapitola Účinnost VtE, s. 44. Dostupné online. 
  2. http://www.czso.cz/csu/2007edicniplan.nsf/kapitola/10n1-07-2007-1600
  3. http://www.sternwind.at/produktion.html
  4. JUNG, Ondřej; MALÝ, Luboš; MAREK, Michael; ŠMÍD, Martin. Větrná energie [online]. Tábor: Střední průmyslová škola strojní a stavební, Tábor, Komenského 1670, 2013 [cit. 2019-05-11]. Kapitola Účinnost VtE, s. 46. Dostupné online. 
  5. (anglicky)Wind Turbine Acoustic Noise Review 2006 Archivováno 16. 4. 2007 na Wayback Machine
  6. GALEY, Patrick. Wind farm 'predator' effect hits ecosystems: study. Phys.org [online]. 2018-11-05 [cit. 2019-05-05]. Dostupné online. (anglicky) 
  7. a b c Roční zpráva o provozu ES ČR 2018 [online]. Praha: ERÚ, 2019-05-14 [cit. 2019-05-16]. Dostupné online. 
  8. WAGNER, Vladimír. Větrné elektrárny včera, dnes a zítra. oEnergetice.cz [online]. OM Solutions, 2017-12-11, 2017-12-13 [cit. 2019-05-06]. Dostupné online. Dostupné také na: [1]. 
  9. Ústav fyziky atmosféry Akademie věd České republiky. Odhad realizovatelného potenciálu větrné energie na území ČR [online]. 2008-02-15 [cit. 2019-05-06]. S. 33-34. Dostupné online. 
  10. Ústav fyziky atmosféry Akademie věd České republiky. Aktualizovaný odhad realizovatelného potenciálu větrné energie z perspektivy roku 2012 [online]. 2012-07-18 [cit. 2019-05-06]. Kapitola Aktualizovaný odhad realizovatelného potenciálu, s. 18. Dostupné online. 
  11. Největší větrná farma Roscoe o výkonu 781,5 MW stojí v USA
  12. Větrné elektrárny ve Španělsku zdolaly rekord v pokrytí poptávky

LiteraturaEditovat

Související článkyEditovat

Externí odkazyEditovat