Transfinitní indukce

Transfinitní indukce je postup důkazu používaný v teorii množin obdobný jako klasická matematická indukce, ale rozšířený z přirozených čísel na ordinální čísla.

Spirála znázorňující všechna ordinální čísla menší než ωω.

Věty o transfinitní indukci

editovat

Přestože princip matematické indukce je uváděn jako součást Peanovy axiomatiky přirozených čísel, je třeba jej v axiomatice teorie množin ZF dokázat jako větu, neboť přirozená čísla v ní nejsou elementární pojem, ale je třeba je zkonstruovat. Stejně tak v případě transfinitní indukce se jedná o věty (i když s poměrně snadným důkazem), které poskytují návod, jak při důkazu postupovat:

Verze první

editovat

Je-li X třída ordinálních čísel, pro kterou platí, že každou svou podmnožinu obsahuje zároveň jako prvek, pak je X shodná s třídou On všech ordinálních čísel.
 

Verze druhá

editovat

Pokud je X třída ordinálních čísel, která obsahuje prázdnou množinu, s každým ordinálem   zároveň ordinál   a pro každý limitní ordinál  , který je podmnožinou X platí, že   je zároveň prvkem X, pak tato třída X obsahuje všechna ordinální čísla, tj. X = On
Jinými slovy pokud platí následující čtyři podmínky, pak X = On:

  1.  
  2.  
  3.  
  4. pro každý limitní ordinál   platí  

Příklad použití

editovat

Transfinitní indukce se používá při důkazu značného množství vět z ordinální aritmetiky, mimo jiné například při důkazu, že mocnění na ordinálních číslech je rozšířením mocnění na přirozených číslech:

  1.  
  2.  

Důsledkem principu transfinitní indukce je princip transfinitní rekurze, tj. možnost jednoznačně definovat zobrazení na ordinálních číslech předpisem, který využívá pro výpočet  -té hodnoty hodnot pro ordinální čísla menší než  . (Je tomu obdobně, jako u běžného aritmetického principu matematické indukce, ze kterého vyplývá možnost používat rekurzi na přirozených číslech.)

Související články

editovat