Dimenze vektorového prostoru: Porovnání verzí

Smazaný obsah Přidaný obsah
Pajs (diskuse | příspěvky)
m kat
rozšíření (hlavně podle en:)
Řádek 1:
'''Dimenzí''' [[vektorový prostor|vektorového prostoru]] <math>V</math> nazýváme počet prvků libovolné [[báze (algebra)|báze]] tohoto [[prostor]]u. Triviálnímu vektorovému prostoru {0}, který nemá žádnou bázi, přiřazujeme dimenzi 0.
 
Vektorový prostor <math>V</math> dimenze <math>n</math> zapisujeme jako <math>V_n</math>, popř. píšeme <math>\dim V = n</math>. Prostor <math>V_n</math> nazýváme <math>n</math>-rozměrným vektorovým prostorem. Pokud je dimenze konečná, příslušný vektorový prostor se označuje jako ''konečněrozměrný''.
Triviálnímu vektorovému prostoru, který nemá žádnou bázi, přiřazujeme dimenzi 0.
 
== Příklady ==
Vektorový prostor <math>V</math> dimenze <math>n</math> zapisujeme jako <math>V_n</math>, popř. <math>\dim V = n</math>. Prostor <math>V_n</math> nazýváme <math>n</math>-rozměrným vektorovým prostorem.
* Vektorový prostor <math>\mathbb{R}^3</math> má bázi <math>\{ (1,0,0), (0,1,0), (0,0,1) \}</math> o třech prvcích, takže jeho dimenze je 3. Obecně platí, že <math>\dim \mathbb{R}^n = n</math> a ještě obecněji <math>\dim F^n = n</math> (pro libovolné [[těleso (algebra)|těleso]] <math>F</math>).
* [[Komplexní číslo|Komplexní čísla]] jako vektorový prostor nad tělesem [[reálné číslo|reálných čísel]] mají dimenzi 2, jako vektorový prostor nad tělesem komplexních čísel však mají dimenzi 1.
* Vektorový prostor [[polynom]]ů s reálnými koeficienty <math>\mathbb{R}[n]</math> má bázi <math>\{ 1, x, x^2, x^3, \ldots \}</math> o [[nekonečná množina|nekonečně mnoha prvcích]], dimenze tohoto prostoru je proto [[alef 0]].
 
== Vlastnosti ==
Je-li <math>W</math> [[podprostor|podprostorem]]em prostoru <math>V</math>, pak platí <math>\dim W \leq \dim V</math>, přičemž [[rovnost]] nastává pouze tehdy, pokud <math>W = V</math>. Libovolné dva konečněrozměrné vektorové prostory nad stejným tělesem se stejnou dimenzí jsou [[izomorfismus|izomorfní]].
 
Pokud je <math>F</math> [[rozšíření tělesa]] <math>K</math>, je <math>F</math> vektorový prostor nad tělesem <math>K</math> a libovolný vektorový prostor <math>V</math> nad tělesem <math>F</math> je také vektorový prostor nad tělesem <math>K</math>, přičemž platí
[[Kategorie:Matematika]]
:<math>\dim_K(V) = \dim_K(F) \cdot \dim_F(V)</math>
Příkladem je fakt, že libovolný komplexní vektorový prostor dimenze <math>n</math> je současně reálným vektorovým prostorem dimenze <math>2n</math>.
 
Pokud <math>V</math> je vektorový prostor nad tělesem <math>F</math>, platí:
* Pokud je <math>\dim V</math> konečné, pak <math>|V| = |F| \dim V</math>,
* pokud je <math>\dim V</math> nekonečné, pak <math>|V| = \max\left( |F|, \dim V \right)</math>.
 
== Podívejte se také na ==
* [[Rozměr]]
* [[Hausdorffova dimenze]]
* [[Topologická dimenze]]
* [[Báze (algebra)]]
 
[[Kategorie:MatematikaLineární algebra]]
 
[[de:Dimension (Vektorraum)]]