Newtonův gravitační zákon: Porovnání verzí

Nahrazena kappa za moderní G
m (Robot: přidáno {{Autoritní data}})
(Nahrazena kappa za moderní G)
značky: editace z Vizuálního editoru školní IP
== Formulace zákona ==
Každá dvě tělesa o [[hmotnost]]ech <math>m_1</math> a <math>m_2</math>, která můžeme dostatečně přesně [[aproximace|aproximovat]] [[hmotný bod|body]], nebo jsou sféricky symetrická (jak vyplývá z&nbsp;[[gaussova věta|Gaussovy věty]]) na sebe působí gravitační silou přímo úměrnou ''[[hmotnost]]em'' těles a nepřímo úměrnou čtverci jejich ''[[vzdálenost]]i''
:<math>F_g = \kappaG { m_1 m_2 \over r^2}\,</math>,
kde G (dříve značeno <math>\kappa</math>) je [[gravitační konstanta]] s hodnotou (přibližně) 6,67×10<sup>−11</sup> [[metr|m]]<sup>3</sup>·[[kilogram|kg]]<sup>-1</sup>·[[sekunda|s]]<sup>-2</sup>, ''m''<sub>1</sub> je hmotnost prvního hmotného bodu, ''m''<sub>2</sub> je hmotnost druhého hmotného bodu a ''r'' je vzdálenost obou hmotných bodů.
 
[[Vektor]]ově lze vyjádřit např. sílu působící na 1. těleso)
:<math>\mathbf{F}_1 = -\kappaG \frac{ m_1 m_2}{r^2} \frac{\mathbf{r}}{r}= m_1 \mathbf{K_2(\mathbf{r})}</math>,
kde <math>\mathbf{r}</math> je [[polohový vektor]] (průvodič) 1. tělesa vzhledem ke druhému a <math>\mathbf{K_2}</math> intenzita gravitačního pole 2. tělesa v místě (středu) 1. tělesa. [[Vektor]] této [[Síla|síly]] leží na spojnici [[Těžiště|hmotných středů]] těchto těles - síla je [[Centrální síla|centrální]].
 
Pokud je rozložení [[hmota|hmoty]] udáno funkcí [[hustota|hustoty]] <math>\rho(\mathbf{r})</math> (a je tedy zcela obecné), můžeme gravitační sílu, kterou takto rozložená hmota působí na [[testovací částice|testovací částici]] hmotnosti ''m'' zapsat ve tvaru
:<math>\mathbf{F}_g = - \kappaG m \int_V{{\rho(\mathbf{r}') \over {|\mathbf{r}-\mathbf{r}'|^{3}}} (\mathbf{r}-\mathbf{r}')} \mathrm{d}V'\, = m \mathbf{K(\mathbf{r})}</math>.
 
Lze ukázat, že (obecné) centrální pole je vždy [[Konzervativní pole|konzervativní]], takže zde existuje [[gravitační potenciál]] <math>\phi</math>
Neregistrovaný uživatel