Dělení nulou

výsledek operace dělení nějakého čísla číslem nula

Dělení nulou je v matematice takové dělení, při němž je dělitel nula. Může být zapsáno jako , kde a je dělenec. V oborech reálných ani komplexních čísel nemá takové dělení smysl – nula je jediné číslo, kterým nelze dělit. V oboru komplexních čísel rozšířených o (komplexní) nekonečno je definováno pro všechny nenulové dělence jako .[1]

Při dělení v plovoucí řádové čárce může být výsledkem speciální hodnota not a number (není číslo) nebo nekonečno.

Interpretace v elementární aritmetice editovat

Když se mluví o dělení na základní úrovni, je často považováno za rozdělování množiny objektů na stejné části. Např.: Pokud máme deset kvádrů a rozdělíme je na skupiny po pěti, dostaneme dvě stejně velké části. To by mohla být ukázka toho, že 10/5 = 2. Dělitel je počet kvádrů v každé části a výsledek dělení odpovídá na otázku: „Pokud mám stejné části po 5 kusech, kolik takových částí musím dát dohromady, abych dostal 10 kusů?“.

Pokud tuto otázku aplikujeme na dělení nulou, otázka „Pokud mám stejné části po 0 kusech, kolik takových částí musím dát dohromady, abych dostal 10 kusů?“ nedává smysl, protože přičítáním částí o 0 prvcích se deset kusů nikdy nezíská.

Další metodou, jak popsat dělení nulou, je opakované odečítání. Např.: Pokud chceme vydělit číslo 13 pěti, odečteme od 13 dvakrát 5 a dostaneme zbytek 3. Dělitel se odečítá, dokud není zbytek menší než dělitel. V případě, že je dělitel nula, při opakovaném odečítání nuly od dělence nikdy nedosáhneme zbytku menšího než nula.

Rané pokusy editovat

Brahmaguptův spis Brāhmasphuṭa-siddhānta z roku 628 je první, který považoval nulu za normální číslo a definoval operace ji obsahující. Autorovi se ale nepodařilo vysvětlit dělení nulou, jeho definice vede k absurdním algebraickým závěrům. Brahmagupta píše:

Kladné nebo záporné číslo dělené nulou je zlomek se jmenovatelem nula. Nula dělená záporným nebo kladným číslem je buď nula, nebo je vyjádřena jako zlomek s čitatelem nula a konečným množstvím jako jmenovatelem. Nula dělená nulou je nula.

Mahavira se v roce 830 neúspěšně pokusil opravit Brahmaguptovu chybu:

Číslo zůstává nezměněno, když je děleno nulou.

Bháskara II. se pokusil problém vyřešit definováním  . Tato definice dává určitý smysl, ale může vést k paradoxům, pokud se s ní nezachází opatrně.

Např.  , což by při odstranění zlomků vycházelo  . To je nesmysl.

Algebraická interpretace editovat

Přirozeným způsobem, jak vyložit dělení nulou, je nejprve definovat dělení pomocí jiných aritmetických operací. Podle standardních pravidel aritmetiky není dělení nulou v oborech přirozených čísel, celých čísel, racionálních čísel, reálných čísel a komplexních čísel (nerozšířených o nekonečno) definováno.

Důvodem je, že dělení je definováno jako inverzní operace k operaci násobení, hodnota   je takovým číslem, pro které platí rovnice  . Například

 

vyjadřuje fakt, že číslo   je tím číslem, které lze dosadit do výrazu

 .

Avšak v případě

 

neexistuje žádné číslo, kterým by bylo možno nahradit otazník ve výrazu

 ,

neboť jakékoli číslo násobené nulou je nula, nikoli šest.

Algebraicky vyjádřeno: pokud  , lze rovnici   zapsat jako  , tedy prostě  . V tomto případě tedy rovnice   nemá žádné řešení, pokud  , a má nekonečně mnoho řešení, pokud  . Ani v jednom případě tedy výraz   nedává smysl a výsledek dělení nulou tak není definován.

Mylné závěry při dělení nulou editovat

Pokud by bylo nějak definováno dělení nulou, mohlo by dojít k mnoha absurdním výsledkům. Příkladem je falešný důkaz, že  , např.:

  1. Pro každé reálné číslo   platí:
     
  2. Rozložíme obě strany dvěma různými způsoby
     
  3. Vydělíme obě strany výrazem   (zde je ve skutečnosti dělení nulou, protože  )
     
  4. Což je:
     
  5. Protože   může nabývat jakýchkoliv hodnot, dosadíme  .
     

Chybou je v tomto případě předpoklad, že   (tzn. 0/0) se rovná 1. K podobným nesmyslm vede jakákoliv jiná hodnota přiřazená jako výsledek 0/0.

Limity a dělení nulou editovat

 
Funkce   pro   blížící se nule zprava jde k nekonečnu, zatímco pro   blížící se nule zleva jde k minus nekonečnu

Na první pohled vypadá možné definovat   jako limitu   pro   jdoucí k 0.

Pro každé kladné   platí:

 

Pro každé záporné   platí:

 

Proto můžeme uvažovat o definování a/0 jako +∞ pro kladné a a -∞ pro záporné a. Nicméně tato definice je nevyhovující ze dvou důvodů.

Zaprvé: Kladné a záporné nekonečno nejsou reálná čísla. Takže pokud chceme zůstat v oboru reálných čísel, nedefinovali jsme nic, co by dávalo smysl. Pokud chceme pracovat s takovou definicí, je nutné rozšířit obor reálných čísel.

Zadruhé: Braní limity zprava je čistě libovolné. Stejně tak bychom mohli vzít limitu zleva a definovat   jako -∞ pro kladné a a +∞ pro záporné a. Toto se dá ilustrovat na rovnici:

 ,

což nedává smysl. To znamená, že jediným fungujícím rozšířením je zavedení nekonečna bez znaménka.

Dále neexistuje žádná zřejmá definice  , která by mohla být odvozena za použití limit. Limita

 

neexistuje. Limita

 ,

kde se f(x) i g(x) blíží 0, když se x blíží 0, může konvergovat k jakékoliv hodnotě nebo nemusí konvergovat vůbec. (Viz též L'Hospitalovo pravidlo.)

Dělení nulou v počítačích editovat

 
Kalkulátor TI-86 signalizuje chybu dělení nulou

Standard IEEE pro dvojkovou aritmetiku v plovoucí řádové čárce, podporovaný skoro všemi moderními procesory, specifikuje, že každá operace v plovoucí řádové čárce včetně dělení nulou má dobře definovaný výsledek. V IEEE 754 je a ÷ 0 kladné nekonečno, pokud je a kladné; záporné nekonečno, pokud je a záporné, a NaN (not a number), pokud a = 0. V IEEE 754 jsou dvě nuly: kladná a záporná; při dělení zápornou nulou jsou ve výsledku opačná znaménka oproti uvedeným výsledkům.

S celočíselným dělením nulou se obvykle zachází jinak, protože neexistuje celočíselná reprezentace takového výsledku. Některé procesory vygenerují výjimku při pokusu o dělení nulou, jiné prostě pokračují a vygenerují nesprávný výsledek dělení (často nulu nebo velké kladné či záporné číslo jako aproximaci nekonečna), případně jde o nedefinované chování.

Reference editovat

  1. M. Hušek, P. Pyrih et al. Matematická analýza 4, kapitola Komplexní funkce, s. 2. Univerzita Karlova v Praze

Související články editovat

Externí odkazy editovat