Otevřít hlavní menu

Jako Lorentzův faktor se označuje člen, který se často vyskytuje ve výrazech a rovnicích speciální teorie relativity (např. kontrakce délek, dilatace času, Lorentzova transformace) a podle kterého se pro pohybující se objekt mění čas, vzdálenost a relativistická hmotnost.

Tento člen se označuje řeckým písmenem γ (gama) a je definován jako

,

kde je velikost rychlosti ve vztažné soustavě, v níž je měřen čas , je vlastní čas a je rychlost světla ve vakuu.

Dalším často se opakujícím výrazem je , nazývá se bezrozměrná rychlost a značí se .

Lorentzův faktor lze pak vyjádřit jako

HodnotyEditovat

 
Lorentzův faktor roste s rychlostí od hodnoty 1. Při rychlostech blízkých   roste nade všechny meze.
     
0,010 1,000 1,000
0,100 1,005 0,995
0,200 1,021 0,980
0,300 1,048 0,954
0,400 1,091 0,917
0,500 1,155 0,866
0,600 1,250 0,800
0,700 1,400 0,714
0,800 1,667 0,600
0,866 2,000 0,500
0,900 2,294 0,436
0,990 7,089 0,141
0,999 22,366 0,045

Přibližné vyjádřeníEditovat

Lorentzův faktor lze vyjádřit pomocí Taylorovy řady jako

 

Aproximaci   lze využít pro určení relativistických jevů při nízkých rychlostech. Pro rychlosti   vykazuje tato aproximace chybu do 1 %, pro rychlosti   vykazuje chybu menší než 0,1 %.

Při omezení řady lze také ukázat, že pro nízké rychlosti přechází speciální teorie relativity na Newtonovu mechaniku. (V následujících vzorcích písmeno   značí klidovou hmotnost, která je invariantní vůči Lorentzově transformaci.) Například relativistický výraz pro hybnost

 

přejde pro   na

 

Podobně vztah pro energii

 

přejde pro   na klasický tvar

 

V Lorentzově transformaci při nízkých rychlostech můžeme zanedbat členy řádu   a vyšší, takže je   a obdržíme tzv. pomalou Lorentzovu transformaci.

 
 
 
 

Pro některé relativistické výpočty se používá vyjádření rychlosti pomocí  

 

což lze také přepsat do Taylorovy řady

 

Související článkyEditovat