Interpolace

Další významy jsou uvedeny na stránce Interpolace (rozcestník).

Interpolace (lat. inter-polare, vylepšit vkládáním) v numerické matematice znamená nalezení přibližné hodnoty funkce v nějakém intervalu, je-li její hodnota známa jen v některých jiných bodech tohoto intervalu. Používá se v případě, že hodnoty funkce v určitých bodech intervalu jsou buďto uvedeny v tabulce, anebo získány měřením.

V geometrii znamená interpolace prokládání daných (změřených) bodů křivkou, konstrukce křivky, která danými body prochází. Od aproximace se liší tím, že hledaná křivka všemi známými (změřenými) body přesně prochází .

Podobného původu je i slovo extrapolace, které označuje nalézání přibližné hodnoty funkce mimo interval známých hodnot, což je obvykle méně spolehlivé. Užívá se nejčastěji pro odhady tendencí do budoucnosti (trendů), například cen v ekonomii.

Sedm bodů k interpolaci (Zadání)

DefiniceEditovat

 
Interpolace polynomem 6. stupně

Mějme funkci f(x), jejíž hodnota je známa v bodech  ,  , ...  . Interpolace znamená nalezení funkční hodnoty  , pokud platí, že   <   <  .

Interpolační křivkaEditovat

Někdy se interpolací rozumí proložení bodů  ,  , ...   analytickou křivkou, která pak umožňuje jednoduchý výpočet funkčních hodnot ve všech mezilehlých bodech. Podle počtu známých bodů n se pak nejčastěji používá:

 
Lineární interpolace (Od bodu k bodu)

Lineární interpolaceEditovat

Nejjednodušší a nejčastěji používaná lineární interpolace (někdy také interpolace lineárním splajnem) spočívá v proložení dvou sousedních bodů přímkou; zavedl ji Isaac Newton (nezaměňovat s Newtonovou interpolací).

Pro   <   <   platí, že  .

OdkazyEditovat

LiteraturaEditovat

  • Stručný statistický slovník. Praha 1967, heslo Interpolace, str. 82

Související článkyEditovat

Externí odkazyEditovat