Dobře uspořádaná množina
V matematice se množina S nazývá dobře uspořádanou množinou, pokud má každá neprázdná část uspořádané množiny S nejmenší prvek. Uspořádání na množině S se pak nazývá dobré uspořádání.
Má-li každá neprázdná část A první prvek, Ernst Zermelo dokázal, že při přijmutí axiomu výběru do Zermelo-Fraenkelovy axiomatizace teorie množin je možno dokázat, že každou množinu lze dobře uspořádat. Tento princip je znám jako princip dobrého uspořádání.
PříkladyEditovat
- Přirozená čísla s uspořádáním menší nebo rovno jsou dobře uspořádaná.
- Celá čísla s uspořádáním menší nebo rovno nejsou dobře uspořádaná, jelikož například množina všech záporných čísel nemá nejmenší prvek.
- Racionální čísla s uspořádáním menší nebo rovno nejsou dobře uspořádaná, jelikož například množina {1/2, 1/3, 1/4, 1/5, …} neobsahuje nejmenší prvek (nehraje roli, že nadmnožina prvek 0 – infimum – obsahuje)
- Reálná čísla s uspořádáním menší nebo rovno nejsou dobře uspořádaná, jelikož například otevřený interval (0,1) nemá nejmenší prvek.[1] Alternativně lze dobrou uspořádanost vyloučit podmnožinou jako u racionálních čísel.
- Ačkoli celá čísla s uspořádáním menší nebo rovno nejsou dobře uspořádaná, lze na nich vytvořit jiné uspořádání, které již dobré je. Například následující relace je dobré uspořádání: x <z y, právě když |x| < |y| nebo (|x| = |y| a x ≤ y). Uspořádání pak vypadá následovně:
0 -1 1 -2 2 -3 3 -4 4 …
Pokud je množina dobře uspořádaná, lze v ní použít důkazy pomocí transfinitní indukce.
OdkazyEditovat
ReferenceEditovat
- ↑ http://www.kmt.zcu.cz/subjects/ela/relace.doc strana 17-18 Teorie binárních relací