Dějiny matematiky

Dějiny matematiky také základní rysy vývoje matematiky od prehistorie po dnešek postihují období několika tisíciletí. Dlouho předtím, než se matematika vyvinula jako samostatná oblast znalostí, se lidé zabývali čísly, strukturami, tvary a čísly, umístěním v prostoru a dalšími tématy souvisejícími s matematikou. Nejzákladnějším matematickým procesem je počítání, je tedy přirozené začít historii matematiky čísly a číselnými systémy . Na začátku bylo třeba být schopen měřit, vážit a být schopen porovnávat různé velikosti. Od primitivního počítání a měření se matematika postupně vyvinula do více obecných a abstraktních myšlenek a teorií.

Nejstarší matematické texty, které známe, pocházejí ze starověké Mezopotámie z doby kolem roku 1800 př. n. l. A ze starověkého Egypta od roku 1650 př. n. l. Také v Indii byly nalezeny staré matematické texty z let 800 až 500 př. n. l. Nejstarší texty pojednávají o problémech a metodách aritmetiky a geometrie, ve všech třech zemích měl člověk znalosti o tom, co se dnes označuje jako Pythagorova věta. Z Číny známe také velmi staré matematické texty.

Základ pro matematiku jako samostatný obor byl položen ve starověkém Řecku. V 6. století před naším letopočtem Pythagoras a jeho učedníci propojili matematiku, hudbu a mystiku ve škole, kde byla znalost čísel a geometrie základní. Eucleidés žil v Alexandrii kolem roku 300 př. n.l. a svým axiomatickým přístupem se Eucleidovy prvky staly důležitou učebnicí po tisíce let. Také Archimédés(nar. kolem 287 př. n. l.) měl ve středověku velký význam pro pozdější vědu. Znalosti řecké matematiky byly v Evropě do značné míry zapomenuty, ale byly zachovány a dále rozvíjeny v muslimském světě, v Arábii a Persii. Ve středověku byly arabské texty přeloženy do latiny a tyto překlady přenesly do Evropy znalosti řecké, arabské a indické matematiky. Neméně důležité bylo zavedení hindsko-arabských číslic do Evropy ve 13. století.

Vývoj matematiky v evropském středověku byl pomalý, ale byl stimulován založením prvních univerzit. Zatímco Řekové ve starověku se vyhýbali nekonečným procesům, evropští matematici v 15. století studovali nekonečné důsledky a posloupnosti. Vzhledem k potřebám navigace se trigonometrie stala stále důležitější součástí matematiky. François Viète (1540–1603) představil použití písmen v rovnicích a položil tak základ moderní matematické notaci.

Matematika byla vždy důležitým nástrojem přírodních věd a pokroky v matematice se téměř vždy shodovaly s vývojem v jiných předmětech, v neposlední řadě ve fyzice a astronomii. K rozvoji matematiky přispělo také mnoho přírodovědců, například Galileo Galilei (1564–1642) a Johannes Kepler (1571–1630).

Zásadní význam pro rozvoj v 18. století bylo zavedení analytické geometrie René Descartesem (1596-1650) a Pierre de Fermat (1607-1665). Mezníkem bylo také zřízení diferenciálního a integrálního počtu, kde základ položili Gottfried Leibniz (1646–1716) a Isaac Newton (1642–1726). Koncept funkce vznikl při studiu geometrických křivek a rovnic. Byla zavedena postupná standardizace matematické notace, v neposlední řadě ovlivněna pracemi Leibnize a Leonharda Eulera (1707–1783).

Studium algebraických rovnic v 17. století vedlo k zavedení komplexních čísel, což je důležitý krok v procesu, kdy se matematické veličiny stávají stále abstraktnějšími. Použití této formy čísel bralo vážně práci Leonharda Eulera a vytvoření komplexní funkční analýzy Augustinem Louisem Cauchyem (1789–1857). Carl Friedrich Gauss (1777–1855), snad vůbec největší matematik, dokázal mimo jiné základní teorém v algebře o existenci komplexních kořenů v polynomiální rovnici.

Objev, že je možné definovat neeuklidovské geometrie, přiměl mnoho lidí dívat se na základ matematiky novýma očima. Zkoumání patologických funkcí také ukázalo, že mnoho intuitivních konceptů vyžaduje jasnější objasnění. V 19. a 20. století mnoho matematiků pracovalo na vytvoření přísného základu pro matematiku. Karl Weierstrass (1815–1897) byl ústřední postavou v procesu objasňování rozdílu mezi geometrií a algebrou, v procesu, který se od té doby nazývá „aritmetizace analýzy“. Teorie množin zavedená Georgem Cantorem (1845–1918) položila základ pro nový způsob vyjadřování, který se dnes používá téměř ve všech částech matematiky. Studium matematických struktur, jako jsou skupiny, metrické prostory a vektorové prostory, bylo důležité pro vývoj abstraktní algebry.

V roce 1900 vytvořil David Hilbert (1862–1943) seznam 23 nevyřešených matematických problémů, které měly velký vliv na vývoj současné matematiky. Výzvou bylo dokázat, že axiomy aritmetiky jsou konzistentní. Ideální obraz dokonalého matematického systému byl ve 20. století občas narušen, v neposlední řadě, když Kurt Gödel (1906–1978) ukázal, že není možné definovat formální axiomatický systém jako základ pro celou matematiku.

Druhá polovina 20. století je období, které se charakteristice zobecňování prostorových a kvantitativních vztahů dostatečně nevymyká, jde-li o předmět matematiky, ale v metodách je značně ovlivněno informatikou, kybernetikou, teorií her apod. Matematika se nadále rozvíjí jak do šířky, tak do hloubky a předmět je dnes tak rozsáhlý, že je nemožné, mít přehled o všem.

Americký historik matematiky Morris Kline v knize Matematika ztráta určitosti (1980) říká: "Hlavní příčinou rozvoje matematiky je její použití ke studiu přírody. Matematické pojmy i matematické metody poznání, jsou nejúčinnějším prostředkem výzkumu a vysvětlení nebeských těles, pohybu těles na Zemi a v její blízkosti, světelných, zvukových, tepelných a elektrických jevů, elektromagnetických vln, stavby hmoty, chemických reakcí, stavby oka, ucha i jiných orgánů lidského těla a mnoha set jiných důležitých jevů." [1]

PravěkEditovat

Původ matematiky spočívá v lidské potřebě umět počítat, umět měřit a umět popsat velikost a tvar. Ve všech raných společnostech lovců a sběračů bylo důležité umět sdělit čísla, jako je počet zvířat a počet nepřátel. Struktura v několika jazycích může naznačovat, že první formy primitivního počítání byly založeny na rozdílu mezi „jednou“, „dvěma“ a „mnoha“. Uvědomění si, že dva kameny a dvě ryby mají něco společného, ​​představuje první formu abstrakce, která je v matematice zásadní.

Tělo bylo dlouho používáno jako pomůcka a Aristoteles poznamenal, že počítání na základě pěti a deseti je přímým důsledkem počtu prstů na rukou a nohou. Anglické slovo „digit“ pro čísla pochází z latiny „digitus“, což znamená „prst“.  Také mnoho jmen primitivních měrných jednotek ukazuje původ v těle, například vztahující se k délce ruky, nohy a paže.

Archeologické vykopávky v Československu odhalily stehenní kost od vlka datovaného kolem roku 30 000 př. n. l. Na této kosti bylo vyryto 55 řádků, systematicky jeden po druhém. Počítání primitivů bylo založeno na kreslení čar a možná také na porovnání s řadou tyčí, kamenů a podobně.

Bylo nutné mít dobře vypracovaný kalendář, aby člověk věděl, kdy je čas zasít a sklízet. K vytvoření kalendáře byly kromě znalostí čísel a aritmetiky zapotřebí rozsáhlé astronomické znalosti. Znalosti v astronomii jsou rozvíjeny matematickými výpočty. Zemědělské společenství musí být rovněž schopno provádět zeměměřičství, aby bylo možné rozdělit země mezi rolníky. Zeměměřičství vyžaduje geometrické znalosti a slovo „geometrie“ pak také znamená zeměměřičství. Bylo potřeba zmapovat a vypočítat pravidelné povodně, aby se člověk mohl chránit před nadměrnými ztrátami plodin a lidským životem. Po povodni se často muselo znovu měřit plochy půdy zemědělců, protože povodně často vedly ke změnám v krajině. Historické prameny ukazují, že všechny civilizace vyvinuly matematické znalosti k řešení praktických problémů týkajících se účetnictví, astronomie, zemědělství a stavebnictví.

Vznik prvních matematických pojmů spadá do oblastí nejstarších říčních kultur (Egypt, Mezopotámie, Čína, Indie). První souvislé matematické texty, jež se dochovaly, pocházejí z Egypta a Mezopotámie z přelomu 3. a 2. tisíciletí př. n. l. Předcházelo jim dlouhé období formování pojmů, které se v těchto textech vyskytují. O tomto období však nemáme žádné písemné doklady a jen velmi málo dokladů hmotných.[2]

StarověkEditovat

Počáteční období, v němž se vytvářely kvantitativní a geometrické vztahy a operace s nimi, trvalo velmi dlouho. Až do 6. století př. n. l. šlo převážně o hromadění aritmetických pojmů, geometrických faktů a základních operací. Matematické znalosti se zaznamenávaly pouze různými systémy číslic a běžným jazykem, což brzdilo rychlejší rozvoj. Do 3. století př. n. l. chybí matematice jakákoliv speciální symbolika.

Starověký Egypt (asi 1850–600 př. n. l)Editovat

viz článek Matematika starověkého Egypta

 
Rhindův papyrus

Matematika starověkého Egypta vznikala společně s rozvojem civilizace od 4. tisíciletí p. n. l. Egypťané používali základní operace sčítání, odčítání, násobení (převáděli na opakované sčítání), dělení. Počítali se zlomky, řešili aritmetické a geometrické úkoly (nap. trojčlenku a rovnice o jedné neznámé). Své znalosti užívali převážně k praktickým účelům. Úvodem do geometrie se staly práce s vyměřováním pozemků (jejich hranice byly každoročně narušovány povodněmi Nilu a bylo nutno je obnovovat). Uměli vytyčit pravý úhel (pomocí provaz o délkách 3, 4 a 5 jednotek), pro určení ostrých úhlů měli tabulky (lze říci, že znali funkci „kotangens“). Znali konstantu   pro stanovení obsahu a obvodu kruhu (s odchylkou méně než 1 %). Většinu znalostí o egyptské matematice poskytl tzv. Rhindův papyrus (z období před rokem 1650 př. n. l) a asi o dvě století starší Moskevský papyrus.

Rhindův papyrus je nejrozsáhlejší a nejvýznamnější matematický text ze starého Egypta, byl opsán kolem roku 1560 př. Kr. písařem Ahmosem z materiálu pocházejícího z doby vlády Amenemheta III. (asi 1853 až 1809). Obsahuje 87 úloh s návody a řešeními a dvě tabulky, ve kterých jsou různé zlomky zapsány jako součet kmenových zlomků (zlomek je zapsán jako součet zlomků s čitatelem 1).[3]

Moskevský papyrus (asi 1890 př. n. l.) je starší než papyrus Rhindův, ale není tak bohatý na obsah. Papyrus obsahuje 25 matematických problémů a řešení jednoho z těchto problémů ukazuje, že Egypťané mohli vypočítat objem komolého kužele , tj. zkrácené pyramidy.  Další problém se týká výpočtu plochy zakřiveného povrchu, ale text uvádí nejednoznačný popis dotyčného povrchu.

Egyptský zápis čísel je jeden z nejstarších, používali desítkový početní systém a nepoziční číselnou soustavu (nezáleží na pořadí, v jakém jsou znaky uspořádány).[4]

MezopotámieEditovat

Z Mezopotámie pocházejí první písemné památky v dějinách lidstva a z období 220 až 180 př. n. l. se dochovalo velké množství matematických tabulek, které ukazují pokročilý stupeň rozvoje mezopotámské algebry i geometrie a také to, že matematika má opravdu dlouhou historii. V té době byly objeveny důležité algoritmy pro řešení rozmanitých úloh. Matematika byla schopna odpovědět na všechny požadavky tehdejší civilizace. Pro její další rozvoj patrně chyběly silnější podněty. Z období následujícího se takřka nezachovaly žádné matematické tabulky, a tudíž nelze posuzovat pozdější rozvoj matematiky. Nicméně v této době byly k násobení používány důmyslné komplety tabulek a např. dělení bylo převáděno na násobení převrácenou hodnotou. Ke stanovení převrácené hodnoty sloužily opět tabulky. Při řešení úloh pracovala tehdejší civilizace pouze s přirozenými čísly a s kladnými šedesátinnými zlomky. Čísla iracionální a záporná tehdy ještě požívána nebyla. Řešení byla opět hledána pouze v oboru přirozených čísel a kladných šedesátinných zlomků.

V algebře počtáři řešili úlohy, které dnes vedou na rovnice lineární, kvadratické, kubické a bikvadratické i jejich soustavy. Objevily se dokonce úlohy vedoucí na rovnice osmého stupně, které nemají žádnou rozumnou aplikaci v tehdejší technické praxi. Byly patrně určeny na procvičování početních dovedností. Neznámé veličiny byly označovány jako délka a šířka, jejich součiny jako plocha. Někdy však byly termíny převzaty i z oblasti aritmetických operací (dělenec a dělitel, násobenec a násobitel atd.).

Samostatnou kapitolou jsou astronomické tabulky chaldejských počtářů, které svědčí o jejich nevšedních početních znalostech a dovednostech. Světu do dneška zanechali šedesátkovou soustavu (čas, úhly), rozdělení kruhu na 360 stupňů, dne na 24 hodin, hodiny na 60 minut a minuty na 60 sekund.

IndieEditovat

Indická matematika byla ve své době obdivuhodně rozvinutá. Způsobila velký zlom ve vývoji matematiky. Světu přinesla především poziční systém. Existovaly symboly pro prvních devět číslic. Desítkový charakter byl velmi rozvinutý. To vše byly příznivé podmínky pro vytvoření poziční soustavy se základem 10. Obrovským objevem indických matematiků se stala nula: 0. Se způsobem zápisu čísel velmi úzce souvisí provádění základních aritmetických operací – sčítání, odčítání, násobení a dělení. Staří Indové mezi ně řadili výpočet druhé a třetí mocniny, druhé a třetí odmocniny a některé algoritmy. Považují se za algebraické (např. pravidlo tří, tj. trojčlenka, metoda falešného předpokladu, směšovací počet, úrokový počet). Podstatnou součástí indické aritmetiky bylo počítání se zlomky.

Nejstarší indické geometrické znalosti jsou obsaženy v textech zvaných šulbasútry neboli pravidla provazce (1. tisíciletí př. n. l.), v nichž jsou uvedena nejdůležitější pravidla používaná při stavbě obětních oltářů. Kolem počátku našeho letopočtu byla výrazným impulzem džinistická kosmologie, která používala při výpočtech velká čísla (úvahy o nekonečnu). Také se rozvíjela kombinatorika; např. prozodik Pingala (kolem roku 200 př. n. l.) popsal schéma binomických koeficientů, které dnes známe jako Pascalův trojúhelník.[5]

Největších úspěchů dosáhli indičtí matematici v algebrě (6. do 14. století). Již tehdy zahrnovala operace se zápornými čísly a počítání s čísli iracionálními. Hlavním tématem bylo řešení slovních úloh, (rovnicí s jednou neznámou nebo rovnicemi s více neznámými). Indičtí učenci formulovali pravidla pro řešení lineárních a kvadratických rovnic a jejich soustav, zabývali se rovněž některými rovnicemi vyšších stupňů a zejména neurčitými rovnicemi. Metodu kuttaka užívali k řešení neurčité lineární rovnice se dvěma neznámými (tj. tzv. diofantická rovnice) a algoritmus pro řešení tzv. Pellovy rovnice. Neměli k dispozici názornou a propracovanou symboliku; používali zkratky slov, strany rovnic zapisovali pod sebou, algoritmy popisovali slovně a dokladovali je na konkrétních příkladech.

Ovládali počítání se zlomky, jejich forma se téměř shodovala se současnou: čitatele psali nad jmenovatelem, nepoužívali zlomkovou čáru. Při operacích s celými čísly a se zlomky vyjadřovali celé čísla jako zlomky se jmenovatelem 1. Umocňovali dvěma a třemi, znali a používali trojčlenku a mnoho dalšího.

ŘeckoEditovat

Egyptská i mezopotámská matematika (stejně jako matematika indická a čínská) přinesla řadu mnohdy pozoruhodných poznatků. Přesto se v tomto období ještě o matematice nehovoří jako o vědě v moderním slova smyslu. Tento přerod nastal až v antickém Řecku cca v 6. století př. n. l. V nových společenských podmínkách řecké otrokářské demokracie se začalo rozvíjet logické uvažování, což umožnilo vznik axiomaticko-deduktivní výstavby matematických teorií s logickým způsobem dokazování platnosti jednotlivých vět. Nejproslulejší knihou napsanou na tomto základě, se staly Euklidovy Základy (řecky Stoicheia, latinsky Elementa) ze 3. století př. n. l.. Vzniká matematický důkaz, v Řecku v souvislosti s geometrií. Na vznik matematických pojmů a operací s nimi působily praktické podněty (obchod, peněžnictví, zeměměřičství, mořeplavby, astronomie…), zatímco k vytvoření matematické teorie, k systému výkladu matematiky, vedla snaha po uspořádání matematických poznatků, potřeba prokázání jejich platnosti a vyvoditelnosti z již dokázaných faktů.

Pythagoras ze SamuEditovat

Související informace naleznete také v článku Pythagoras ze Samu.

Pythagoras tvrdil, že vše lze převézt na číselný princip a číslům přiřazoval různé vlastnosti. Za základ všeho považoval číslo, bod (bod jako prvek nejmenší vymezenosti – jeden bod je bod, dva body jsou úsečka, tři body tvoří trojúhelník, čtyři body prostorové těleso a součet těchto čísel dává číslo deset, které považoval za magickou konstrukci vesmíru a na tomto základě pak hledal on i jeho následovníci vztahy mezi věcmi). Pythagoras se narodil v Malé Asii na ostrově Samos. Po vpádu Peršanů se usadil na jihu Itálie a tam založil školu, která byla přístupná mužům i ženám a diskriminační chování bylo zakázáno. Na škole měl neomezenou autoritu. Velkou pozornost věnoval geometriiPythagorova věta: „Obsah čtverce sestrojeného nad přeponou pravoúhlého rovinného trojúhelníka je roven součtu obsahů čtverců nad jeho odvěsnami“. Není ale jasné, jestli je jejím autorem Pythagoras sám, nebo jeho žáci. Přívrženci jeho filozofie se nazývají pythagorejci, šlo o řecké filozofy, obývající řecké osady na jihu Itálie a příslušníky Pythagorovy školy.

 
Eukleidés

EukleidésEditovat

Související informace naleznete také v článku Eukleidés.

O Eukleidově životě víme velmi málo. Narodil se v Řecku, studoval snad v Athénách na Platónově Akademii, kde se geometrii naučil od Eudoxa a Theaitéta. Král Ptolemaios I. (323 – 283 př. n. l.) ho povolal do nově založené Alexandrijské knihovny (či Musea), kde pracoval a snad také učil. Mezi jeho žáky snad patřil také Archimédés.

Eukleidovým nejvýznamnějším dílem jsou třináctidílné „Základy“ („Stoicheia“) založené na systému ústředních axiomů geometrie, které další dva tisíce let určovaly evropské geometrické myšlení. Podává v nich také důkaz Pythagorovy věty a důkaz nekonečného množství prvočísel.

ArchimédésEditovat

Související informace naleznete také v článku Archimédés.

Archimédés pocházel ze Syrákús a je jedním z nejvýznamnějších učenců antiky. Objevil mnoho zákonů matematiky a fyziky. V geometrii zavedl původně negeometrické pojmy jako těžiště, těžnice. Věnoval se metodám výpočtu ploch (především kruhu, elipsy a parabolické úseče) a objemů těles (zejména válce, kužele, koule, elipsoidu, paraboloidu). Stanovil objem rotačního paraboloidu, elipsoidu a hyperboloidu prakticky způsobem, který se dnes používá v integrálním počtu. Kolem roku 225 př. n. l. Archimédes zjistil, že obsah části paraboly odpovídá 4/3 obsahu trojúhelníku se stejnou základnou a výškou. Archimédes sestrojil nekonečnou posloupnost trojúhelníků počínaje trojúhelníkem o obsahu A a dalšími menšími trojúhelníky vyplňujícími postupně oblast, která byla vymezena parabolou. Dostal nekonečnou posloupnost obsahů:

 ,…

Obsah části paraboly je proto roven

 

Tento výsledek je prvním známým příkladem součtu nekonečné řady.

Své matematické výzkumy shrnul ve spise „De mechanicis propositionubis ad Eratosthenes methodus“ (O metodě mechanicky odvoditelných vět), objeveném až ve 20. století, v roce 1906. Jako matematik Archimédés odvodil obvod a obsah kruhu (určením přibližné hodnoty Ludolfova čísla). Jeho nejlepším odhadem bylo 3,1418 (chyba asi 0,0002). Je třeba si uvědomit, že Archimédes nemohl využít výhod algebraického a trigonometrického zápisu a desítkové soustavy čísel. Proto musel být výpočet velmi obtížný.[6] Z vlastních matematických objevů si nicméně sám Archimédés cenil nejvíce objevu poměru mezi povrchem a objemem koule a jí opsaného válce (jde o poměr 2:3) – tento objev je pak v grafické podobě ztvárněn na Archimédově náhrobním kameni.

StředověkEditovat

 
Žena vyučující geometrii, středověká ilustrace Euklidových Základů

ČínaEditovat

Staří Číňané byli znamenití počtáři, což dokazuje nejen množství unikátních astronomických výpočtů (např. předpovědi zatmění Slunce) nebo zavedení vlastního lunisolárního kalendáře.

Základním textem čínské matematiky, ale také japonské matematiky, se stala kniha Jiuzhang suanshu (Devět traktátů o matematickém umění) z období mezi roky 150 př. n. l. až 50 našeho letopočtu. Kniha obsahuje pojednání o kmenových zlomocích, o plochách základních geometrických útvarů (včetně kruhu a jeho úsečí) i výsečí z koule. První historická osobnost čínské matematiky je LIU HUI (220 - 280) se proslavil svými komentáři k Devíti traktátům, spočítal číslo   pomocí vepsaných a opsaných obdélníků kružnici a pro praktické počítání navrhl počítat s hodnotou 3,14. Sepsal knihu Hai dao suan jing (Matematická příručka pro mořské ostrovy - dodatek k poslední kapitole Devíti traktátů).

Dalším významným matematikem byl ZU CHONGZHI (429 - 501), Zabýval se astronomií a jako matematik proslul zejména přesným výpočtem kalendáře.

Práce matematika ZHU SHIJIE (1265 - 1320) jsou považovány za vrchol klasické čínské matematiky. Kolem roku 1299 napsal knihu Suan xue qiumeng (Úvod do studia matematiky) a kolem roku 1303 Siyuan yujian (Správné zrcadlo čtyř neznámých).

Úvod do studia matematiky je vlastně sbírka úloh na počítání se zlomky a řešení rovnic. V knize se objevuje i metoda na řešení soustavy lineárních rovnic (Gaussova eliminační metoda). Druhá jeho práce studovuje polynomiální rovnice několika proměnných, součty konečných řad. Jsou zde studována čísla, která v současné době tvoří tzv. Pascalův trojúhelník. Vyskytuje se zde speciální znak pro nulu.[7]

 
Al-džabr wa-l-maqábala

Islámský světEditovat

Arabská matematika byla nejvíce ovlivněna matematikou mezopotámskou, řeckou a indickou. Z indické matematiky převzala zápis čísel a algoritmy pro písemné počítání, z řecké matematiky abstraktní geometrii a myšlenku axiomatické výstavby matematiky, z mezopotámského a egyptského světa převzala tradici numericky náročných výpočtů a především důraz na užití matematiky v praktickém životě. Desítkový poziční systém pronikal pomalu na Blízký východ a byl používán vedle domácích systémů. Islámský svět se začal seznamovat s tzv. indickým systémem prostřednictvím al-Fázárího překladu díla Sinhásitas do arabštiny. Začaly se používat číslice z Indie. Protože do Evropy se dostaly prostřednictvím Arabů, jsou dnes známé jako arabské číslice.

 
Arabské číslice

V historii i v současnosti matematiky a informatiky hrály a hrají důležitou roli předpisy k řešení úloh, např. předpisy pro čtyři základní aritmetické operace s přirozenými čísly zapsanými v desítkové soustavě. Předpisy tohoto charakteru se zabýval počátkem 9. století perský matematik Abdalláh Muhammad ibn Músa, al-Chwárizmí (nebo al-Chorezmí) al-Madžúsí, latinské zkomolení části jeho jména uvedlo do evropských jazyků slovo algoritmus.

Al-Chwárizmí dovedl geometricky řešit kvadratické rovnice a vymyslel jednoduchý algoritmus pro násobení dvojciferného čísla číslem jednociferným. V letech 800 a 825 napsal dvě díla, z nichž jedno byla početnice, které v latinském překladu začíná slovy „Algoritmi dicit“ („Tak praví Al Chwárízmí“). Zdánlivá záměna jmen vznikla patrně zkomolením při překladu z arabštiny do latiny. Druhým dílem byla učebnice algebryAl-džabr wa-l-maqábala“ („Uspořádání“), která obsahovala nauku o řešení rovnic. Podle autora je rovnice uspořádána, pokud jsou všechny její členy kladné. Na takový tvar byly všechny rovnice převáděny, čímž autor definoval povolené operace s rovnicemi. Neznal algebru obecných čísel.

EvropaEditovat

V období středověku matematika, stejně jako ostatní vědy, v Evropě upadá. Důležitou středověkou početní pomůckou byl abakus, který používali již staří Řekové, ale jehož znalost byla po pádu římského impéria na dlouhou dobu zapomenuta a byla znovu objevována. Až do 10. století se v Evropě k zápisu čísel používaly pouze římské číslice. Ve 12. století se v Evropě rozšířilo slovo cifra ve smyslu číslice nebo číslo. Rozhodující význam pro přijetí desítkové poziční soustavy a nových číslic měly nové spisy, které se v Evropě šířily (např. Libro alghvarismi de practica arismatrice (Kniha Algorisma o aritmetické praxi) od Joanna Sevillského ; Liber ysagogarum Alghorismi in artem astronomicam a magistro A. compositus (Kniha uvedení Algorisma do astronomického uměni) neznámého mistra). Někteří myslitelé a církevní matematici přesto dospěli k jistým důležitým výsledkům. Mikuláš Oresme (druhá polovina 14. století) studoval mocniny s lomenými exponenty, ale především je znám prací, v níž se zabývá závislostí mezi veličinami. Nanáší závisle proměnnou (latitudo — šířku) vůči nezávisle proměnné (longitudo — délce), kterou lze měřit. Je v tom druh přechodu od souřadnic na nebeské nebo zemské sféře (které znali již ve starověku) k moderním geometrickým souřadnicím. Jeho práce o tom byla několikrát vytištěna v letech 14821515 a pravděpodobně ovlivnila renesanční matematiky včetně Descarta.

Až do poloviny 15. století neexistovaly žádné symboly pro označení aritmetických operací. Byly vyjadřovány pouze slovy nebo z kontextu nebo z vlastního zápisu výpočtu. U zrodu symbolů pro aritmetické operace stál Johannes Wídmann (1462-1498), který ve své knize Behende und hubsche Rechenung auff allen kauffmanschafft (Hbité a pěkné počítání pro všechny kupce) vydané v Lipsku roku 1489 použil symboly + a —; poprvé se tak tyto symboly objevily ve vytištěné knize.[8]

Johannes Mtiller zvaný Regiomontanus (1436-1476), se již zcela zbavil šedesátinného systému a v roce 1467 sestavil první čistě desetinné trigonomet­rické tabulky (vydané až po jeho smrtí roku 1490). První souhrn vědomostí o zlomcích a operacích s nimi podal nizozemský matematik Simon Stevín (1548-1620) ve své knize Arithmétique (1585).  

Do začátku 16. století nebyl učiněn žádný podstatný pokrok k překonání úrovně arabské a antické matematiky.

Novověká evropská matematikaEditovat

Na počátku 16. století překročila evropská matematika rámec znalostí, které byly vytvořeny v antickém Řecku a národy orientu. První nové a původní výsledky přinesli italští matematici, pracující v oblasti řešení rovnic. Významným matematikem byl Scipione del Ferro (1465-1526), který v roce 1515 nalezl metodu řešení kubických rovnic tvaru x 3 + mx = n. Řešení rovnic 4. stupně odvodil Lodovico Ferrari (1522-1565). Zásadní pokrok učinil geniální samouk Nicollo Tartaglia (1499-1557), který kolem r. 1635 našel metody obecné řešení kubických rovnic. Jeho výsledky zveřejnil ve své knize Ars magna (Velké umění) v r. 1645 Gierolamo Cardano (1501-1576). Tartagliovy výsledky jsou tak dodnes známy pod názvem Cardanovy vzorce. Zmíněná Cardanova kniha je často označována za první knihu moderní matematiky. Francouzský matematik François Viète vybudoval algebru jako učení o algebraických rovnicích. Zabýval se trigonometrií, našel rozvoje funkcí cos nx a sin nx v mocninách cos x asinx, první vyšetřoval nekonečné součiny. V Matematickém kánonu (1579) uveřejnil tabulky funkcí sinus, kosinus, tangens, kotangens, sekans a kosekans. Roku 1591 vydal In artem analyticam isagoe (Úvod do analytického učení).

René Descartes, jeden ze zakladatelů novověké filozofie a vědy žil po roce 1628 v Nizozemí. V r. 1637 vyšla v Leydenu jeho proslulá Rozprava o metodě

( principy analytické metody a aplikace v matematice a fyzice). Je to první tištěná práce obsahující prvky analytické geometrie (dříve napsaná práce Fermatova zůstala pouze v rukopisu). Descartes se matematikou začal hlouběji zabývat v r. 1618 a dospěl k analogické algebraické symbolice. Zvolil symboly a, b, c,... pro označování koeficientů, x, y, z,... pro označení neznámých. Znovu zformuloval základní větu algebry (před ním A. Girard v r. 1629).

Skotský matematik John Napier popsal podstatu logaritmu nezávisle na švýcarském astronomovi Jostu Bürgovi (ten objevil diferenční počet, jako předchůdce infinitesimálního počtu v oboru celých čísel). Také Henry Briggs pracoval mimo jiné na logaritmech.

V r. 1638 vyšly v holandském Leydenu Galilea Galileiho („otec moderní astronomie“, „otec moderní fyziky“) Rozpravy a matematické důkazy o dvou nových vědách (přinesly výklad jeho mechaniky). Galileo Galilei byl předchůdcem Bonaventura Cavalieriho v matematické analýze, také předchůdcem zakladatelů teorie pravděpodobnosti.

Při řešení problémů mechaniky přinášejí nezávisle na sobě ve druhé polovině 17. století nové matematické prostředky pro zkoumání fyzikálních jevů Gottffried Wilhelm Leibniz a Isaac Newton (infinitezimální počet). Později byl aplikován i v geometrii (Gaspard Monge).

 
Matematická analýza - model

Leonhard Euler, švýcarský vědec a nejvýkonnější matematik 18. století v učebnicích ustálil symboliku algebry a infinitezimálního počtu. Chápání goniometrických funkcí jako poměrů pochází od něho. Sepsal kvalitní učebnice matematické analýzy. Systematicky popsal a rozšířil poznatky o nekonečných řadách, analyticky popsal řadu křivek a ploch, rozvedl teorii diferenciálních rovnic. Jsou známy Eulerovy integrály, provedl první zpracování variačního počtu, napsal mnoho dalších textů. Podobně jako Euler byl dalším z velkých matematiků Joseph-Louis Lagrange, francouzský matematik a astronom italského původu, který významně rozvinul matematickou analýzu, teorii čísel, klasickou a nebeskou mechaniku. Je znám jako spoluzakladatelem oblasti matematiky, nazývané variační počet.

Na konci 18. století, průmyslová revoluce přinesla velké množství technických problémů. Matematika byla společně s fyzikou připravena k jejich řešení, ale objevovaly se také rozpory. Komplikované funkce, objevující se např. při zkoumání vedení tepla v různých materiálech, si vynutily zpřesnění pojmu funkce, limity, derivace apod.

Augustin Louis Cauchy byl průkopníkem matematické analýzy a rozvíjel dále dílo, které započali Gottfried Wilhelm Leibniz a Sir Isaac Newton. Pracoval také v oblasti komplexní analýzy. K jeho současníkům lze zařadit Bernarda Bolzana, byl jedním z prvních matematiků, kteří v matematické analýze začali uplatňovat rigoróznost. Díla Beyträge zu einer begründeteren Darstellung der Mathematik (1810), Der binomische Lehrsatz (1816) a Rein analytischer Beweis (1817) představovala "...ukázku nového směru vývoje analýzy", která byla až o padesát let později objevena a rozvinuta Karlem Weierstrassem.

Niels Henrik Abel byl norský matematik, který významně ovlivnil funkcionální analýzu. Známý je důkazem nemožnosti obecného řešení rovnic pátého stupně pomocí vzorců

s odmocninami. Po Abelovi se nazývá řada matematických pojmů např.: Abelova grupa, Abelova sumace, Abelovo kritérium. V roce 2002 po něm byla pojmenována Abelova cena. Jeho současník Évariste Galois byl francouzský matematik, formuloval Galoisovu teorii, pomocí které charakterizovat řešení obecného polynomu. Je považován za zakladatele teorie grup.

Kubické a bikvadratické rovniceEditovat

Italský matematik Luca Pacioli zjistil, že rovnici   lze řešit kvadratickou metodou, ale rovnice   nebo   nebyl schopen vyřešit. Scipione del Ferro zastával, stejně jako Pacioli místo na katedře aritmetiky a geometrie Univerzity v Boloni. Del Ferro se zabýval algebraickým řešením kubických rovnic, byl však schopen řešit pouze rovnici tvaru  .

Až po jeho smrti objevil Nicolo z Brescii, známý pod jménem Tartaglia, obecnou metodu pro řešení všech kubických rovnic. Gerolamo Cardano v Miláně připravoval k vydání svoji práci „Practica Arithmeticae“. Pozval Tartagliu, aby mu prozradil tajemství řešení kubické rovnice. Tartaglia požadoval, aby Cardan zachoval tajemství do doby, než on sám bude řešení publikovat.

Cardan ale slib porušil. V roce 1545 publikoval práci „Ars Magna“, první latinské pojednání o algebře. Ta inspirovala řadu matematiků, aby se zabývali řešením kubických a bikvadratických rovnic. Své metody řešení odvodili Viéte, Harriot, Euler a Descartes.

 
Integrální počet

Vznik matematické analýzyEditovat

K dalšímu vývoji matematické analýzy (infinitezimální počet) od Archimédových začátků došlo až v 16. století, kdy mechanika přivedla matematiky k řešení problémů, jako bylo ohnisko gravitace. Johannes Kepler ve své práci o pohybu planet vypočetl obsah částí elipsy. Svoji metodu založil na představě plochy jako součtu úseček, která v podstatě byla metodou integrace. Fermat také studoval maxima a minima. Zjistil, že funkce dosahuje svého maxima nebo minima, když je tečna křivky této funkce rovnoběžná s osou x. Svoji metodu popsal Descartovi tak, jak ji chápeme dnes: lokální maximum nebo minimum funkce se nachází v bodech, kde je derivace funkce rovna nule.

Skutečnými otci matematické analýzy jsou však Isaac Newton a Gottfried Wilhelm Leibniz. Newton ji vytvořil jako nástroj, který potřeboval pro své fyzikální výpočty. Nazýval ji flexí a její zápis i způsob práce s ní se o dnešního velmi lišil. Není jisté, kolik toho Leibniz o Newtonově metodě věděl (Newton své výsledky obvykle publikoval s velkým zpožděním), ale pár let po Newtonovi také přišel s tímto objevem, ale už s moderním zápisem (např. pro symbol integrálu), matematičtějším pojetím a pojmem „kalkulus“. Ve své době byl spor mezi těmito dvěma objeviteli značně vyhrocený a na mnoho dalších let představoval jablko sváru mezi „kontinentální“ a „ostrovní“ matematikou. Dnešní dějepisci přiznávají zásluhu oběma vědcům.

Termín „integrální počet“ zavedl v roce 1690 Jacob Bernoulli.

Nové uchopení geometrieEditovat

Novověk učinil v oblasti geometrie dva důležité kroky: odhalil existenci neeuklidovských geometrií a vytvořil analytickou geometrii.

Descart zavedením kartézské soustavy souřadnic objevuje metodu, jak analyticky, tj. prostřednictvím čísel a rovnic, zkoumat geometrické útvary. Díky tomuto objevu se v následujících staletích podaří vyřešit mnoho klasických geometrických problémů, např. otázka trisekce úhlu.

Stálé neúspěchy při logickém vyjadřování teorie rovnoběžek si vyžádaly ověřování základů euklidovské geometrie. Negováním pátého Euklidova postulátu o rovnoběžkách se u Lobačevského a Bolyaie objevila neeuklidovská geometrie jako matematicky zcela správná, ze svých axiomů odvoditelná a v okruhu své platnosti bezesporná teorie.

Teorie pravděpodobnostiEditovat

Související informace v článku teorie pravděpodobnosti

Teorie pravděpodobnosti a matematická statistika jsou matematické disciplíny spadající do vědního oboru, který se nazývá stochastika. První zmínky nacházíme již v díle Platona ”Philebos”. Obě uvedené disciplíny dosáhly rozmachu až ve 20. století.

Za počátek matematické teorie pravděpodobnosti je považována korespondence Blaise Pascala a Pierre de Fermat v roce 1654. Christian Huygensův spis De ratiociniis in ludo aleae

(O uvažování v hazardních hrách) z roku 1657 byl první tištěnou prací v této oblasti. Poté byl přetištěn v první části knihy Ars conjectandi (Nauka o domněnce) Jacoba Bernoulliho, který doplnil či zobecnil Huygensovy myšlenky a začala vznikat teorie pravděpodobnosti v dnešním pojetí této matematické disciplíny.

V 18. století se teorií pravděpodobnosti zabýval rod Bernoulliů. Jejich hlavním vkladem je spis Jakoba Bernoulliho Ars conjectandi, napsaný mezi lety 1679 - 1685 a vydaný Jakobovým synovcem Niclausem v r. 1713. V r. 1774 publikoval první práci věnovanou teorii pravděpodobnosti Pierre Simon Laplace v knize Théorie anaíytique des probabilités (nebo Essai philosophique sur les probabilités). Laplace shrnul a prohloubil vše, čeho bylo v této oblasti do té doby dosaženo.[9]

Za hlavní rysy dalšího vývoje teorie pravděpodobnosti lze považovat pronikání metod diferenciálního a integrálního počtu (včetně teorie řad) a s tím související studium spojitých náhodných veličin; také uplatňování teorie pravděpodobnosti při zpracování výsledků astronomických a geodetických pozorování (představitelé: Abraham de Moivre a věta Moivreova – Laplaceova nebo Carl Friedrich Gausse). V průběhu 19. století se neobjevují zásadní nové podněty v této oblasti.

Historie teorie herEditovat

viz také Teorie her

Teorie her jako samostatná vědní disciplína je velmi mladá, o skutečné prehistorii teorie her lze o hovořit v souvislosti se vznikem počtu pravděpodobnosti (ve spojení se jmény Pascal, Fermat, Bernoulli). Emile Borel publikoval v letech 1921 až 1927 v oblasti teorie pravděpodobnosti sérii francouzsky psaných poznámek, jako první se pokusil o matematizaci pojmu strategická hra. Kdo by měl být považován za zakladatele matematické teorie her, to byl zásadní předmět sporu: Emile Borel, který na jedné straně jako první studoval pojem strategická hra v obecnějším smyslu, nebo John von Neumann, jehož první práce byla publikována o několik let později. Ale stala se skutečným stimulem pro další vývoj teorie. Johna von Neumann položil základy teorie her jako samostatné matematické disciplíny a zasloužil se o rozšíření jejích aplikací do dalších oborů. Významným mezníkem ve vývoji teorie her bylo dílo Theory of Games and Economic Behavior z roku 1944, jež byla výsledkem spolupráce Johna von Neumanna s ekonomem Oskarem Morgensternem.

John Forbes Nash studoval kooperativní hry a jejich redukci používal na hry nekooperativní; v této souvislosti se hovoří o Nashově programu. V roce 1994 získal John F. Nash spolu s Johnem C. Harsanyim a Reinhardem Seltenem Nobelovu cenu za ekonomii za průkopnickou analýzu rovnováhy v teorii nekooperativních her.[10]

Vznik moderní algebryEditovat

Vyšetřování řady konkrétních číselných systémů (kvaterniony, oktávy, triplety, matice atd.) podmiňovalo v 2.polovině 19. století postupný vývoj teorie hyperkomplexních čísel (B. Peirce (1809–1880) - vytvořil pojem lineární asociativní algebra). Matematici pracovali s lineárními kombinacemi, lineárními závislostmi, lineárními nezávislostí, s generováním, bázemi a souřadnicemi, lineárními transformacemi, zavedli pojem dimenze. V teorii hyperkomplexních čísel se utvářely důležité pojmy moderní algebry – těleso, vektorový prostor, maticová reprezentace atd. Objev vztahů mezi teorií asociativních algeber a teorií reprezentací grup (v osmdesátých letech 19. století) měl zásadní význam pro další rozvoj algebry.

V matematice se tak začaly z vnitřních problémů její výstavby tvořit teorie, které byly logicky správné a při tom často neodpovídaly žádné známé situaci z reálného světa. Začala nová etapa vývoje matematiky, kdy se předmětem zkoumání staly abstraktní kvantitativní vztahy a geometrické objekty.

20. stoletíEditovat

NeúplnostEditovat

V dvacátých letech 20. století formuloval slavný německý matematik David Hilbert tzv. Hilbertův program. Ten měl za cíl vystavět matematiku na neotřesitelných logických základech, především na bezrozporné teorii množin. Na přelomu století se totiž nejlepší matematikové zabývali problém, jak se vyhnout paradoxům, které s sebou tehdejší příliš volné množinové definice, dnes už víme že nevyhnutelně, přinášely. Hilbert věřil, že matematiku na takovýchto bezrozporných základech postavit lze. Je autorem slavného výroku: „Musíme vědět. Budeme vědět.“

Hned v roce 1931 však přišel mladý rakušan Kurt Gödel a jedním chytrým důkazem celou snahu položil na kolena. Ukázal, že každý axiomatický systém obsahující aritmetiku je nutně neúplný — tedy že v něm existují pravdivá tvrzení, která však nelze prostředky systému dokázat. Tento výsledek se zařadil po bok podobných deziluzivních objevů tehdejší doby, jako byla Schrödingerova neurčitost a značně zmírnil modernistickou víru v možnosti vědy a techniky.

InformatikaEditovat

Související informace naleznete také v článku Dějiny informatiky.

Do tohoto leptání matematického sebevědomí se krátce poté zapojil britský matematik Alan Turing, když negativně rozřešil tzv. „Entscheidungsproblem“. Při této příležitosti vytvořil model Turingova stroje, čímž položil teoretické základy teorii složitosti a vůbec celé informatiky, nového odvětví matematiky zabývající se zejména algoritmizací.

Počítače se ukázaly být poměrně revoluční změnou v chápání užitečnosti matematiky. Na jednu stranu se jejich konstrukce neobejde bez chytrých matematických aplikací (viz např. šifrovací algoritmus RSA), na druhou stranu umožňují mechanicky procházet mnohem víc možností, než by stihli lidé a tak podlamují praktickou užitečnost matematického důkazu. I ten navíc pod jejich vlivem doznává změn: V roce 1976 byla dokázána věta o čtyřech barvách počítačovou analýzou tisíce případů, na které šlo hlavní problém rozložit a dlouho se vedly spory, je-li takovýto způsob vedení důkazu korektní.

Vedení důkazůEditovat

Ve dvacátém století se vyskytlo několik pozoruhodných případů nestandardního zacházení se základním matematickým nástrojem, důkazem. Vedle již zmíněného důkazu věty o čtyřech barvách, které počítač asistoval, vyskytly se pokusy o plně automatické dokazování vět. Počítač v nich dostane sadu axiomů zadaných symboly výrokové logiky a z nich vyvozuje stále složitější vlastnosti systému.

Kvalita tohoto odvozování a dokazování je zatím samozřejmě nedostatečná. Ostatně intuice živých matematiků může slavit ohromné úspěchy i bez znalosti pojmu „důkaz“: indický matematik Rámanudžan ve dvacátých letech odvodil mnoho hlubokých pravd čistě na základě matematického vhledu.

Různorodost matematiky v druhé pol. 20. stol.Editovat

V této době se matematikou zabývá nebývalé množství lidí. Roste počet matematických časopisů, jejich záběr je hlubší i širší. Vznikají nové obory, ty stávající se štěpí.

FraktályEditovat

Jako příklad matematických novinek z tohoto období můžeme uvést fraktály. Jde o novou oblast zkoumání geometrie, která se zabývá soběpodobnými útvary, tj. útvary, jejichž část vykazuje podobnost s celkem. Ačkoliv jsou definice známých fraktálů jednoduché, jejich tvar i chování vykazuje podivuhodnou složitost (viz článek RSA).

GrafyEditovat

Související informace naleznete také v článku Dějiny teorie grafů.

Výrazného rozkvětu se dočkala teorie grafů. Na stavbu jejích základů zavdal již Euler, když v roce 1736 vyřešil problém mostů v Královci. Jako samostatná disciplína se však tato odnož kombinatoriky etablovala až v polovině dvacátého století, první kniha věnovaná teorii grafů viz.[11]

Aplikačně jde o nesmírně důležitý obor. Pomáhá v návrzích optimálních komunikačních a transportních sítí, zvyšuje rychlost počítačových algoritmů atd.

Do jejich dějin se výrazně zapsalo i několik českých matematiků: Jarník a Borůvka, kteří ve třicátých letech vyřešili problém konstrukce minimální kostry grafu.[11]

Dva důležité výsledky z nedávné dobyEditovat

V souvislosti s touto expanzí roste význam hledání mostů mezi jednotlivými podobory. Naprosto odlišně vypadají matematické struktury mohou mít silné společné vlastnosti, za pomoci kterých mohou jít vyřešit složité otázky v jedné struktuře převedením do druhé, ve které tak složité nebudou.

Pomocí právě popsané metody byla v roce 1994 vyřešena velká Fermatova věta. Angličan Wiles dokázal dostatečně velkou část Tanijamovy-Šimurovy věty, čímž vytvořil nový most mezi algebrou a geometrií a automaticky tak dokázal staletí vzdorující Fermatův problém.[12]

Sto let starou Poincarého domněnku proměnil v roce 2006 ve větu ruský matematik Perelman. Poincarého domněnka je první a zatím jediný vyřešený problém milénia.

BudoucnostEditovat

Na matematiky stále čeká mnoho klasických nevyřešených problémů. S každým novým výsledkem navíc vystupují další otázky. Není třeba se bát o nedostatek práce — budoucí matematika se ale bude muset filosoficky vyrovnat s rychlými počítači a také bude muset vylepšit práci s existujícími znalostmi, kterých bude čím dál tím více.

V roce 2009 zahájil Timothy Gowers projekt Polymath, v rámci kterého se množství dobrovolníků z celého světa podílelo na společném hledání alternativního důkazu hustotní Hales-Jewettovy věty ryze webovými prostředky, tedy prostřednictvím blogů, komentářů a wiki. Po šesti týdnech práce byl důkaz pravděpodobně nalezen.[13]

ReferenceEditovat

V tomto článku byl použit překlad textu z článku Dějiny matematiky na norské (bokmål) Wikipedii.

  1. FOLTA, Jaroslav. Dějiny matematiky I [online]. Praha: 2004 [cit. 2021-02-26]. Dostupné online. 
  2. HALAS, Zdeněk. Dějiny matematiky [online]. Praha: [cit. 2021-02-20]. Dostupné online. 
  3. HYKŠOVÁ, Magdalena. Prednaska_egypt.pdf [online]. Praha: [cit. 2021-02-26]. Dostupné online. 
  4. VALENTA, Jiří. Povídání o matematice [online]. [cit. 2021-02-20]. Dostupné online. 
  5. SÝKOROVÁ, Irena. Matematika ve staré indii [online]. Praha: 2014 [cit. 2021-02-20]. Dostupné online. 
  6. ŠIMŠA, Jaromír. Huygensovo vylepšení Archimédovy metody [online]. Praha: 2004 [cit. 2021-02-20]. Dostupné online. 
  7. REICHL, Jaroslav; VŠETIČKA, Martin. Encyklopedie fyziky. fyzika.jreichl.com [online]. 2006 [cit. 2021-02-22]. Dostupné online. 
  8. BEČVÁŘOVÁ, Martina. Středověké početní algoritmy [online]. Praha: Prometheus, 2001 [cit. 2021-02-22]. Dostupné online. 
  9. MAČÁK, Karel. Poznámky k formování teorie pravděpodobnosti v XVII. a XVIII. století [online]. Praha: Prometheus, 1997 [cit. 2021-02-23]. Dostupné online. 
  10. HYKŠOVÁ, Magdalena. Historické počátky teorie her [online]. Praha: 2004 [cit. 2021-02-23]. Dostupné online. 
  11. a b ŠIŠMA, Pavel. Teorie grafů 1736-1963. 1. vyd. Praha: Prometheus, 1997. 171 s. Dostupné online. ISBN 8071960659. OCLC 40090145 
  12. SINGH, Simon. Velká Fermatova věta. Vyd. 1. vyd. Praha: Academia 198 s. s. Dostupné online. ISBN 80-200-0394-0, ISBN 978-80-200-0394-2. OCLC 46961986 
  13. GOWERS, Timothy; NIELSEN, Michael. Massively collaborative mathematics. Nature. 2009-10, roč. 461, čís. 7266, s. 879–881. Dostupné online [cit. 2021-02-24]. ISSN 1476-4687. DOI:10.1038/461879a. (anglicky) 

Související článkyEditovat

Externí odkazyEditovat

LiteraturaEditovat

ČeskyEditovat

  • MANDELBROT, Benoît. Fraktály. Praha: Mladá Fronta, 2003. ISBN 80-204-1009-0. 
  • SINGH, Simon. Velká Fermatova věta. Praha: Academia, 2002. ISBN 80-200-0394-0. 
  • ŠIŠMA, Pavel. Teorie grafů 1736-1963. Brno: Prometheus, 1997. ISBN 80-7196-065-9. 
  • VOPĚNKA, Petr. Rozpravy s geometrií. Praha: Panorama, 1989. 
  • VOPĚNKA, Petr. Vyprávění o kráse novobarokní matematiky. Praha: Práh, 2004. ISBN 80-7252-103-9. 
  • Matematika v proměnách věků III. Příprava vydání Jindřich Bečvář, Eduard Fuchs. Praha: Výzkumné centrum pro dějiny vědy, 2004. ISBN 80-7285-040-7. 
  • BEČVÁŘ J.: Z historie lineární algebry, Katedra didaktiky matematiky, Matematicko-fyzikální fakulta Univerzity Karlovy, Matfyzpress, Praha, 2007, 519 stran, ISBN 978-80-7378-036-4.
  • BEČVÁŘ J., FUCHS E. (ed.): Historie matematiky I, Sborník, Seminář pro vyučující na středních školách, Jevíčko, srpen 1993, JČMF, Brno 1994, 241 stran.
  • BEČVÁŘ J., FUCHS E. (ed.): Historie matematiky II, Sborník, Seminář pro vyučující na středních školách, Jevíčko, 21. 8. – 24. 8. 1995, Prometheus, Praha 1997, 194 stran, ISBN 80-7196-046-2.
  • BEČVÁŘ J., FUCHS E. (ed.): Matematika v proměnách věků I, Sborník, Prometheus, Praha 1998, 218 stran, ISBN 80-7196-107-8.
  • BEČVÁŘ J., FUCHS E. (ed.): Matematika v proměnách věků II, Prometheus, Praha 2001, 267 stran, ISBN 80-7196-218-X.
  • BEČVÁŘ J., FUCHS E. (ed.): Matematika v proměnách věků III, Výzkumné centrum pro dějiny vědy, Praha 2004, 253 stran, ISBN 80-7285-040-7.
  • FUCHS E. (ed.): Matematika v proměnách věků IV, Akademické nakladatelství CERM, Brno, 2007, 223 stran, ISBN 978-80-7204-536-5.
  • BEČVÁŘOVÁ M., BEČVÁŘ J. (ed.): Matematika v proměnách věků V, Matfyzpress, Praha, 2007, 331 stran, ISBN 978-80-7378-017-3.
  • BEČVÁŘ J., BEČVÁŘOVÁ M. (ed.): Matematika v proměnách věků VI, Matfyzpress, Praha, 2010, 231 stran, ISBN 978-80-7378-146-0.
  • BEČVÁŘ J., FUCHS E. (ed.): Matematika v 16. a 17. století, Sborník, Seminář Historie matematiky III., Jevíčko, 18.8. – 21. 8. 1997, Prometheus, Praha 1999, 321 stran, ISBN 80-7196-150-7.
  • BEČVÁŘ J., FUCHS E. (ed.): Matematika v 19. století, Sborník přednášek z letních škol Historie matematiky, Prometheus, Praha 1996, 144 stran, ISBN 80-7196-019-5.
  • BEČVÁŘOVÁ M.: Eukleidovy Základy, jejich vydání a překlady, Prometheus, Praha 2002, 297 stran, ISBN 80-7196-233-3.
  • BEČVÁŘ J. a kol.: Matematika ve středověké Evropě, Prometheus, Praha 2001, 445 stran, ISBN 80-7196-232-5.
  • BEČVÁŘ J., BEČVÁŘOVÁ M., Bečvář, VYMAZALOVÁ H.: Matematika ve starověku. Egypt a Mezopotámie, Prometheus, Praha 2003, 371 stran, ISBN 80-7196-255-4.
  • HUDEČEK J.: Matematika v devíti kapitolách. Překlad, vysvětlivky a úvod, Katedra didaktiky matematiky, Matematicko-fyzikální fakulta Univerzity Karlovy, Matfyzpress, Praha, 2008, 244 stran, ISBN 978-80-7378-046-3.
  • MAREŠ, Milan. Příběhy matematiky. 2. vyd. Praha: Pistorius & Olšanská, 2011. ISBN 978-80-87053-64-5. 
  • MAČÁK K.: Počátky počtu pravděpodobnosti, Prometheus, Praha 1997, 111 stran, ISBN 80-7196-089-6.
  • SCHWABIK Š., ŠARMANOVÁ P.: Malý průvodce historií integrálu, Prometheus, Praha 1996, 95 stran, ISBN 80-7196-038-1.
  • ŠOLCOVÁ, A.: Kapitoly z historie matematiky a informatiky, Česká technika – nakladatelství ČVUT v Praze, 2017, ISBN 978-80-01-06092-6.
  • Řecké matematické texty. Příprava vydání Z. Šír (výběr textů, úvodní studie a poznámky), R. Mašek a A. Šmíd (překlad). Praha: Oikúmené, 2011. ISBN 978-80-7298-308-7. 

AnglickyEditovat