Bayesova věta

Bayesova věta je věta teorie pravděpodobnosti, která udává, jak podmíněná pravděpodobnost nějakého jevu souvisí s opačnou podmíněnou pravděpodobností. Poprvé na tuto souvislost upozornil anglický duchovní Thomas Bayes (1702–1761) v posmrtně vydaném článku An Essay towards solving a Problem in the Doctrine of Chances (1763). Roku 1774 větu znovu objevil francouzský matematik a fyzik Pierre-Simon Laplace, nicméně postupně upadla v zapomnění a rozšířila se až v 2. polovině 20. století.[1] Frekvenční interpretace pravděpodobnosti se poté nazývá klasická či Laplaceova, právě podle Pierre-Simona Laplace.

Bayesovu větu lze v Bayesiánské (epistemologické) interpretaci pravděpodobnosti formulovat takto:

Mějme dva náhodné jevy A a B s pravděpodobnostmi P(A) a P(B), přičemž P(B) > 0. Potom platí
kde P(A|B) je podmíněná pravděpodobnost jevu A za předpokladu, že nastal jev B, a naopak P(B|A) je pravděpodobnost jevu B podmíněná výskytem jevu A.

ReferenceEditovat

Související článkyEditovat